This is an extract from:

A Source Book from The Open Group

The Authorized Guide to the Single UNIX Specification, Version 4

The Open Group



Copyright © September 2010, The Open Group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the copyright owners.

A Source Book from The Open Group
The Authorized Guide to the Single UNIX Specification, Version 4

Published in the U.K. by The Open Group, September 2010.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii A Source Book from The Open Group (2010)



11.1

11.2

OB XSI

The Authorized Guide to the Single UNIX Specification, Version 4

Chapter 11

System Interfaces Migration

Introduction

This chapter contains a section for each system interface defined in XSH, Issue 7. Each section
contains the SYNOPSIS and gives the derivation of the interface. For interfaces new to Issue 7, a
brief description is included, complete with examples where appropriate. For interfaces carried
forward from Issue 6, syntax and semantic changes made to the interface in Issue 7 are identified
(if any). Only changes that might affect an application programmer are included.

System Interfaces

_Exit, _exit
Purpose:

Synopsis:

Derivation:

Issue 7:

Terminate a process.

#i ncl ude <stdlib. h>

void _Exit(int status);

#i ncl ude <uni std. h>

void _exit(int status);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #085 is applied, clarifying the text
regarding flushing of streams and closing of temporary files.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, and Semaphores options is moved to the Base.

_longjmp, _setjmp

Purpose:

Synopsis:

Derivation:

Issue 7:

Non-local goto.
#i ncl ude <setj np. h>

void _Iongj np(j mp_buf env, int val);
int _setjnm(jnp_buf env);

First released in Issue 4, Version 2.

The _longjmp() and _setjmp() functions are marked obsolescent. Applications
should use siglongjmp () and sigsetjmp () respectively.



System Interfaces System Interfaces Migration

_tolower
Purpose: Transliterate uppercase characters to lowercase.
oB xsI  Synopsis:  #i ncl ude <ctype. h>

int tolower(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The _tolower() function is marked obsolescent. Applications should use the
tolower () function instead.
_toupper
Purpose: Transliterate lowercase characters to uppercase.
oB xsI  Synopsis:  #i ncl ude <ctype. h>

int _toupper(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The _toupper() function is marked obsolescent. Applications should use the
toupper () function instead.
a64l, 164a
Purpose: Convert between a 32-bit integer and a radix-64 ASCII string.
XSl Synopsis:  #i ncl ude <stdlib. h>

| ong a64l (const char *s);
char *| 64a(l ong val ue);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
abort
Purpose: Generate an abnormal process abort.

Synopsis: ~ #i ncl ude <stdlib. h>
voi d abort (void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
abs
Purpose: Return an integer absolute value.

Synopsis:  #i ncl ude <stdlib. h>
int abs(int i);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

2 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.
accept
Purpose: Accept a new connection on a socket.

Synopsis:  #i ncl ude <sys/socket. h>

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_|en);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[ENOBUEFS] and [ENOMEM] errors to become “shall fail” errors.

Functionality relating to XSI STREAMS is marked obsolescent.

access, faccessat
Purpose: Determine accessibility of a file relative to directory file descriptor.
Synopsis: ~ #i ncl ude <uni std. h>

i nt access(const char *path, int anode);
int faccessat(int fd, const char *path, int anode, int flag);

The faccessat() function is equivalent to the access() function, except in the case
where path specifies a relative path. In this case the file whose accessibility is to be
determined is located relative to the directory associated with the file descriptor fd
instead of the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_EACCESS flag can be used to specify that checks for accessibility are
performed using the effective user and group IDs instead of the real user and
group ID.

The purpose of the faccessat () function is to enable the checking of the accessibility
of files in directories other than the current working directory without exposure to
race conditions. Any part of the path of a file could be changed in parallel to a call
to access(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the faccessat() function it can be guaranteed that the file
tested for accessibility is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: Austin Group Interpretation 1003.1-2001 #046 is applied.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The faccessat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

The Authorized Guide to the Single UNIX Specification, Version 4 3



System Interfaces System Interfaces Migration

acos, acosf, acosl
Purpose: Arc cosine functions.
Synopsis:  #i ncl ude <math. h>

doubl e acos(doubl e x);
float acosf(float x);
| ong doubl e acosl (I ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

acosh, acoshf, acoshl
Purpose: Inverse hyperbolic cosine functions.
Synopsis:  #i ncl ude <math. h>

doubl e acosh(doubl e x);
float acoshf(float Xx);
| ong doubl e acoshl (1 ong double Xx);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
aio_cancel
Purpose: Cancel an asynchronous 1/O request.

Synopsis:  #i ncl ude <ai 0. h>
int aio_cancel (int fildes, struct aiocb *ai ochp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The aio_cancel() function is moved from the Asynchronous Input and Output
option to the Base.

aio_error

Purpose: Retrieve errors status for an asynchronous I/O operation.

Synopsis:  #i ncl ude <ai 0. h>
int aio_error(const struct aiocb *aiochp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #045 is applied, clarifying that the
behavior is undefined if the aiocb structure pointed to by aiocbp is not associated
with an operation that has been scheduled.

SD5-XSH-ERN-148 is applied, clarifying that when aio_error() fails it returns -1
and sets errno.

The aio_error() function is moved from the Asynchronous Input and Output option
to the Base.

4 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

aio_fsync
Purpose: Asynchronous file synchronization.
Synopsis:  #i ncl ude <ai 0. h>
int aio_fsync(int op, struct aiocb *aiochp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The aio_fsync() function is moved from the Asynchronous Input and Output
option to the Base.

aio_read

Purpose: Asynchronous read from a file.

Synopsis:  #i ncl ude <ai 0. h>
int aio_read(struct aioch *aiochp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #082 is applied.
The aio_read () function is moved from the Asynchronous Input and Output option
to the Base.

aio_return

Purpose: Retrieve return status of an asynchronous I/O operation.

Synopsis:  #i ncl ude <ai 0. h>
ssize_ t aio_return(struct aiocb *aiochp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XSH-ERN-148 is applied, clarifying that when aio_return() fails it returns -1
and sets errno.

The aio_return() function is moved from the Asynchronous Input and Output
option to the Base.

aio_suspend

Purpose: Wait for an asynchronous I/O request.

Synopsis:  #i ncl ude <ai 0. h>

i nt ai o_suspend(const struct aiocb *const list[], int nent,
const struct tinmespec *tineout);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The aio_suspend() function is moved from the Asynchronous Input and Output
option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 5



System Interfaces System Interfaces Migration

aio_write
Purpose: Asynchronous write to a file.
Synopsis:  #i ncl ude <ai 0. h>
int aio wite(struct aiocb *aiochp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #082 is applied.
The aio_write() function is moved from the Asynchronous Input and Output
option to the Base.

alarm

Purpose: Schedule an alarm signal.

Synopsis:  #i ncl ude <uni std. h>
unsi gned al ar m(unsi gned seconds);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

alphasort, scandir
Purpose: Scan a directory.
Synopsis:  #i ncl ude <dirent. h>

i nt al phasort(const struct dirent **dl
const struct dirent **d2);
int scandir(const char *dir, struct dirent ***nanelist,
int (*sel)(const struct dirent *),
int (*conpar)(const struct dirent **,
const struct dirent **));

The alphasort() function can be used as the comparison function for the scandir()
function to sort the directory entries, d1 and d2, into alphabetical order. Sorting
happens as if by calling the strcoll() function on the d_name element of the dirent
structures passed as the two parameters. If the strcoll() function fails, the return
value of alphasort () is unspecified.

The scandir () function scans the directory dir, calling the function referenced by sel
on each directory entry. Entries for which the function referenced by sel returns
non-zero are stored in strings allocated as if by a call to malloc(), and sorted as if by
a call to gsort() with the comparison function compar, except that compar need not
provide total ordering. The strings are collected in array namelist which is allocated
as if by a call to malloc().

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

6 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

asctime, asctime_r

Purpose:
OB Synopsis:
OB CX

Derivation:

Issue 7:

Convert date and time to a string.
#incl ude <time. h>

char *asctinme(const struct tm *tinmeptr);
char *asctinme_r(const struct tm*restrict tm
char *restrict buf);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions
obsolescent. Applications should use the strftime() function instead.

The asctime_r() function is moved from the Thread-Safe Functions option to the
Base.

asin, asinf, asinl

Purpose:

Synopsis:

Derivation:

Issue 7:

Arc sine function.
#i ncl ude <mat h. h>

doubl e asi n(doubl e x);
float asinf(float x);
| ong doubl e asinl (I ong double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

asinh, asinhf, asinhl

Purpose:

Synopsis:

Derivation:

Issue 7:

assert
Purpose:

Synopsis:

Derivation:

Issue 7:

Inverse hyperbolic sine functions.
#i ncl ude <math. h>

doubl e asi nh(doubl e x);
float asinhf(float Xx);
| ong doubl e asinhl (1 ong double x);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Insert program diagnostics.

#i ncl ude <assert. h>

voi d assert(scal ar expression);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 7



System Interfaces

System Interfaces Migration

atan, atanf, atanl

Purpose:

Synopsis:

Derivation:

Issue 7:

Arc tangent function.
#i ncl ude <math. h>

doubl e atan(doubl e x);
float atanf(float x);
| ong doubl e atanl (I ong double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

atan2, atan2f, atan2l

Purpose: Arc tangent functions.
Synopsis:  #i ncl ude <math. h>
doubl e atan2(doubl e y, double x);
float atan2f(float y, float x);
| ong doubl e atan2l (1 ong double y, |ong double x);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
atanh, atanhf, atanhl
Purpose: Inverse hyperbolic tangent functions.
Synopsis:  #i ncl ude <math. h>
doubl e atanh(doubl e x);
float atanhf(float Xx);
| ong doubl e at anhl (1 ong doubl e Xx);
Derivation: First released in Issue 4, Version 2.
Issue 7: No functional changes are made in this issue.
atexit
Purpose: Register a function to run at process termination.
Synopsis:  #i ncl ude <stdlib. h>
int atexit(void (*func)(void));
Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.
Issue 7: No functional changes are made in this issue.
atof
Purpose: Convert a string to a double-precision number.
Synopsis:  #i ncl ude <stdlib. h>
doubl e atof (const char *str);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

atoi
Purpose:

Synopsis:

Derivation:

Issue 7:

atol, atoll
Purpose:

Synopsis:

Derivation:

Issue 7:

basename
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

bind
Purpose:

Synopsis:

Derivation:

Issue 7:

No functional changes are made in this issue.

Convert a string to an integer.

#i ncl ude <stdlib. h>

int atoi (const char *str);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Convert a string to a long integer.
#i nclude <stdlib. h>

| ong atol (const char *str);
long long atoll (const char *nptr);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Return the last component of a pathname.
#i ncl ude <l i bgen. h>

char *basenane(char *path);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Bind a name to a socket.
#i ncl ude <sys/socket. h>

int bind(int socket, const struct sockaddr *address,
sockl en_t address_len);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb).

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[ENOBUES] error to become a “shall fail” error.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

SD5-XSH-ERN-185 is applied, specifying asynchronous behavior for bind() when
O_NONBLOCK is set for the socket.

An example is added.

The Authorized Guide to the Single UNIX Specification, Version 4 9



System Interfaces System Interfaces Migration

bsearch
Purpose: Binary search a sorted table.
Synopsis:  #i ncl ude <stdlib. h>

voi d *bsearch(const void *key, const void *base, size_ t nel
size t width, int (*conpar)(const void *, const void *));

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The EXAMPLES section is revised.
btowc
Purpose: Single byte to wide character conversion.

Synopsis:  #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

wint t btowc(int c);
Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

cabs, cabsf, cabsl
Purpose: Return a complex absolute value.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e cabs(doubl e conpl ex z);
float cabsf(float conplex z);
| ong doubl e cabsl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cacos, cacosf, cacosl
Purpose: Complex arc cosine functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex cacos(doubl e conpl ex z);
float conpl ex cacosf(float conplex z);
| ong doubl e conpl ex cacosl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cacosh, cacoshf, cacoshl
Purpose: Complex arc hyperbolic cosine functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex cacosh(doubl e conpl ex z);
float conplex cacoshf(float conplex z);
| ong doubl e conpl ex cacoshl (1 ong doubl e conpl ex z);

10 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

calloc
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

A memory allocator.

#i ncl ude <stdlib. h>

void *calloc(size_t nelem size t elsize);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

carg, cargf, cargl

Purpose:

Synopsis:

Derivation:

Issue 7:

Complex argument functions.
#i ncl ude <conpl ex. h>

doubl e carg(doubl e conplex z);
float cargf(float conplex z);
| ong doubl e cargl (I ong doubl e conpl ex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

casin, casinf, casinl

Purpose:

Synopsis:

Derivation:

Issue 7:

Complex arc sine functions.
#i ncl ude <conpl ex. h>

doubl e conpl ex casi n(doubl e conpl ex z);
float conplex casinf(float conplex z);
| ong doubl e conpl ex casinl (1 ong doubl e conplex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

casinh, casinhf, casinhl

Purpose:

Synopsis:

Derivation:

Issue 7:

Complex arc hyperbolic sine functions.
#i ncl ude <conpl ex. h>

doubl e conpl ex casi nh(doubl e conpl ex z);
float conplex casinhf(float conplex z);
| ong doubl e conpl ex casinhl (1 ong doubl e conpl ex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 11



System Interfaces System Interfaces Migration

catan, catanf, catanl
Purpose: Complex arc tangent functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex catan(doubl e conpl ex z);
float conplex catanf(float conplex z);
| ong doubl e conpl ex catanl (I ong doubl e conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

catanh, catanhf, catanhl
Purpose: Complex arc hyperbolic tangent functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex cat anh(doubl e conpl ex z);
float conplex catanhf(float conplex z);
| ong doubl e conpl ex catanhl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
catclose
Purpose: Close a message catalog descriptor.

Synopsis: ~ #i ncl ude <nl _types. h>
int catclose(nl _catd catd);

Derivation: First released in Issue 2.

Issue 7: The catclose() function is moved from the XSI option to the Base.
catgets
Purpose: Read a program message.

Synopsis:  #i ncl ude <nl _types. h>

char *catgets(nl _catd catd, int set_id, int nsg_id,
const char *s);

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[EINTR] and [ENOMSG] errors to become “shall fail” errors, updating the
RETURN VALUE section, and updating the DESCRIPTION to note that the results
are undefined if catd is not a value returned by catopen () for a message catalog still
open in the process.

The catgets() function is moved from the XSI option to the Base.

12 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

catopen
Purpose: Open a message catalog.
Synopsis: ~ #i ncl ude <nl _types. h>
nl _catd catopen(const char *nane, int oflag);
Derivation: First released in Issue 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The catopen () function is moved from the XSI option to the Base.

cbrt, cbrtf, cbrtl
Purpose: Cube root functions.
Synopsis:  #i ncl ude <math. h>

doubl e chbrt(double x);
float cbrtf(float x);
| ong doubl e cbrtl (I ong double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

ccos, ccosf, ccosl
Purpose: Complex cosine functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex ccos(doubl e conpl ex z);
float conplex ccosf(float conplex z);
| ong doubl e conpl ex ccosl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ccosh, ccoshf, ccoshl
Purpose: Complex hyperbolic cosine functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex ccosh(doubl e conpl ex z);
float conpl ex ccoshf(float conplex z);
| ong doubl e conpl ex ccoshl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 13



System Interfaces System Interfaces Migration

14

ceil, ceilf, ceill
Purpose: Ceiling value function.
Synopsis:  #i ncl ude <math. h>

doubl e ceil (doubl e x);
float ceilf(float x);
| ong double ceill(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

cexp, cexpf, cexpl
Purpose: Complex exponential functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex cexp(doubl e conpl ex z);
float conplex cexpf(float conplex z);
| ong doubl e conpl ex cexpl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
cfgetispeed
Purpose: Get input baud rate.

Synopsis:  #i ncl ude <termi os. h>
speed_t cfgetispeed(const struct ternmos *term os_p);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

cfgetospeed
Purpose: Get output baud rate.
Synopsis:  #i ncl ude <termi os. h>
speed_t cfgetospeed(const struct ternmos *term os_p);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).
Issue 7: No functional changes are made in this issue.
cfsetispeed
Purpose: Set input baud rate.

Synopsis:  #i ncl ude <termi os. h>
int cfsetispeed(struct ternios *term os_p, speed t speed);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.
cfsetospeed
Purpose: Set output baud rate.

Synopsis:  #i ncl ude <termi os. h>
int cfsetospeed(struct ternios *term os_p, speed t speed);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).
Issue 7: No functional changes are made in this issue.
chdir
Purpose: Change working directory.

Synopsis:  #i ncl ude <uni std. h>
int chdir(const char *path);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

chmod, fchmodat

Purpose: Change mode of a file relative to directory file descriptor.

Synopsis:  #i ncl ude <sys/stat. h>

i nt chnod(const char *path, nbde_t node);
int fchnodat(int fd, const char *path, node t node, int flag);

The fchmodat() function is equivalent to the chmod() function except in the case
where path specifies a relative path. In this case the file to be changed is
determined relative to the directory associated with the file descriptor fd instead of
the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag can be used to specify that if path names a
symbolic link, then the mode of the symbolic link is changed.

The purpose of the fchmodat () function is to enable changing the mode of files in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
chmod(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the fchmodat() function it can be guaranteed that the
changed file is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The fchmodat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The Authorized Guide to the Single UNIX Specification, Version 4 15



System Interfaces System Interfaces Migration

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

chown, fchownat
Purpose: Change owner and group of a file relative to directory file descriptor.
Synopsis:  #i ncl ude <uni std. h>

i nt chown(const char *path, uid t owner, gid t group);
int fchownat(int fd, const char *path, uid_t owner
gidt group, int flag);

The fchownat () function is equivalent to the chown () and Ichown () functions except
in the case where path specifies a relative path. In this case the file to be changed is
determined relative to the directory associated with the file descriptor fd instead of
the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag controls whether fchownat() behaves like
chown() or Ichown(): if AT_SYMLINK_NOFOLLOW is set and path names a
symbolic link, ownership of the symbolic link is changed.

The purpose of the fchownat () function is to enable changing ownership of files in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
chown () or Ichown (), resulting in unspecified behavior. By opening a file descriptor
for the target directory and using the fchownat () function it can be guaranteed that
the changed file is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The fchownat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.
The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

cimag, cimagf, cimagl

Purpose: Complex imaginary functions.

Synopsis:  #i ncl ude <conpl ex. h>

doubl e ci mag(doubl e conpl ex z);
float cimagf(float conplex z);
| ong doubl e ci magl (1 ong doubl e conpl ex z);

16 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

clearerr
Purpose:

Synopsis:

Derivation:

Issue 7:

clock
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Clear indicators on a stream.

#i ncl ude <stdio. h>

void clearerr(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Report CPU time used.

#incl ude <tine. h>

clock t clock(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

clock_getcpuclockid

Purpose:

CPT Synopsis:

Derivation:

Issue 7:

Access a process CPU-time clock (ADVANCED REALTIME).
#i ncl ude <tine. h>

int clock getcpucl ockid(pid_t pid, clockid_ t *clock_id);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

No functional changes are made in this issue.

clock_getres, clock_gettime, clock_settime

Purpose:

Cx Synopsis:

Derivation:

Issue 7:

Clock and timer functions.
#i ncl ude <tine. h>

int clock getres(clockid t clock_id, struct tinmespec *res);
int clock gettine(clockid t clock id, struct tinespec *tp);
int clock settine(clockid t clock id,

const struct tinespec *tp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Functionality relating to the Clock Selection option is moved to the Base.

The clock_getres (), clock_gettime(), and clock_settime() functions are moved from the
Timers option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 17



System Interfaces

System Interfaces Migration

clock_nanosleep

Purpose: High resolution sleep with specifiable clock.
cx Synopsis:  #i ncl ude <tinme. h>
int clock_nanosl eep(clockid_t clock_id, int flags,
const struct tinmespec *rqgtp, struct tinespec *rntp);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The clock_nanosleep() function is moved from the Clock Selection option to the
Base.

clog, clogf, clogl

Purpose: Complex natural logarithm functions.

Synopsis:  #i ncl ude <conpl ex. h>
doubl e conpl ex cl og(doubl e conpl ex z);
float conplex clogf(float conplex z);
| ong doubl e conpl ex clogl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

close

Purpose: Close a file descriptor.

Synopsis:  #i ncl ude <uni std. h>
int close(int fildes);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Functionality relating to the XSI STREAMS option is marked obsolescent.
Functionality relating to the Asynchronous Input and Output and Memory
Mapped Files options is moved to the Base.
Austin Group Interpretation 1003.1-2001 #139 is applied, clarifying that the
requirement for close() on a socket to block for up to the current linger interval is
not conditional on the O_NONBLOCK setting.

closedir

Purpose: Close a directory stream.

Synopsis:  #i ncl ude <dirent. h>
int closedir(DIR *dirp);

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

18

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

closelog, openlog, setlogmask, syslog

Purpose:

XSI Synopsis:

Derivation:

Issue 7:

confstr
Purpose:

Synopsis:

Derivation:

Issue 7:

Control system log.
#i ncl ude <sysl og. h>

voi d cl osel og(void);
voi d openl og(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);
voi d syslog(int priority, const char *nessage,
/* argunents */);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Get configurable variables.

#i ncl ude <uni std. h>

size_ t confstr(int nane, char *buf, size_ t |en);
First released in Issue 4. Derived from the .

Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV
variable.

Austin Group Interpretations 1003.1-2001 #166 is applied to permit an additional
compiler flag to enable threads.

The V6 variables for the supported programming environments are marked
obsolescent.

The variables for the supported programming environments are updated to be V7.

The LEGACY variables and obsolescent values are removed.

conj, conjf, conjl

Purpose:

Synopsis:

Derivation:

Issue 7:

Complex conjugate functions.
#i ncl ude <conpl ex. h>

doubl e conpl ex conj (doubl e conpl ex z);
float conplex conjf(float conplex z);
| ong doubl e conpl ex conjl (I ong double conplex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 19



System Interfaces System Interfaces Migration

connect
Purpose: Connect a socket.
Synopsis:  #i ncl ude <sys/socket. h>

i nt connect (int socket, const struct sockaddr *address,
sockl en_t address_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: Austin Group Interpretation 1003.1-2001 #035 is applied, clarifying the description
of connected sockets.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

Austin Group Interpretation 1003.1-2001 #188 is applied, changing the method
used to reset a peer address for a datagram socket.

copysign, copysignf, copysignl

Purpose: Number manipulation function.

Synopsis:  #i ncl ude <math. h>

doubl e copysi gn(doubl e x, double y);
float copysignf(float x, float y);
| ong doubl e copysignl (1 ong double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cos, cosf, cosl
Purpose: Cosine function.
Synopsis:  #i ncl ude <math. h>

doubl e cos(doubl e x);
float cosf(float Xx);
| ong doubl e cosl (1 ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

cosh, coshf, coshl
Purpose: Hyperbolic cosine functions.
Synopsis:  #i ncl ude <math. h>

doubl e cosh(doubl e x);
float coshf(float x);
| ong doubl e coshl (I ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

20 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

cpow, cpowf, cpowl

Purpose: Complex power functions.
Synopsis:  #i ncl ude <conpl ex. h>
doubl e conpl ex cpow doubl e conpl ex x, double conplex y);
float conplex cpowf (float conplex x, float conplex y);
| ong doubl e conpl ex cpow (I ong doubl e conpl ex x,
| ong doubl e conpl ex y);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.
cproj, cprojf, cprojl
Purpose: Complex projection functions.
Synopsis:  #i ncl ude <conpl ex. h>
doubl e conpl ex cproj (doubl e conplex z);
float conplex cprojf(float conplex z);
| ong doubl e conpl ex cprojl (long double conplex z);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.

creal, crealf, creall

Purpose:

Synopsis:

Derivation:

Issue 7:

creat
Purpose:

OH Synopsis:

Derivation:

Issue 7:

Complex real functions.
#i ncl ude <conpl ex. h>

doubl e creal (doubl e conplex z);
float creal f(float conplex z);
| ong doubl e creall (Il ong doubl e conplex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Create a new file or rewrite an existing one.

#i ncl ude <sys/stat. h>
#i nclude <fcntl. h>

int creat(const char *path, nbde_t node);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 21



System Interfaces System Interfaces Migration

X8I

22

crypt
Purpose: String encoding function (CRYPT).
Synopsis:  #i ncl ude <uni std. h>

char *crypt(const char *key, const char *salt);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-178 is applied, clarifying the required contents of the salt argument.

csin, csinf, csinl
Purpose: Complex sine functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex csin(double conpl ex z);
float conplex csinf(float conplex z);
| ong doubl e conpl ex csinl(long double conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

csinh, csinhf, csinhl
Purpose: Complex hyperbolic sine functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex csi nh(doubl e conpl ex z);
float conplex csinhf(float conplex z);
| ong doubl e conpl ex csinhl (1 ong doubl e conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
csqrt, csqrtf, csqrtl
Purpose: Complex square root functions.

Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex csqrt(doubl e conplex z);
float conplex csqrtf(float conplex z);
| ong doubl e conpl ex csqrtl (1l ong doubl e conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

ctan, ctanf, ctanl
Purpose: Complex tangent functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex ctan(doubl e conpl ex z);
float conplex ctanf(float conplex z);
| ong doubl e conpl ex ctanl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ctanh, ctanhf, ctanhl
Purpose: Complex hyperbolic tangent functions.
Synopsis:  #i ncl ude <conpl ex. h>

doubl e conpl ex ctanh(doubl e conplex z);
float conplex ctanhf(float conplex z);
| ong doubl e conpl ex ctanhl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ctermid

Purpose: Generate a pathname for the controlling terminal.
(@ Synopsis:  #i ncl ude <stdi o. h>

char *ctermd(char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying the thread-
safety requirements for the ctermid () function.
ctime, ctime_r
Purpose: Convert a time value to a date and time string.
OB Synopsis:  #i ncl ude <tinme. h>

char *ctine(const tine_t *cl ock);
OB CX char *ctinme_r(const tine_t *clock, char *buf);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-25 is applied, noting in APPLICATION USAGE that attempts to
use ctime() or ctime_r() for times before the Epoch or for times beyond the year
9999 produce undefined results.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions
obsolescent. Applications should use strftime() to generate strings from broken-
down times. Values for the broken-down time structure can be obtained by calling
gmtime() or localtime().

The ctime_r() function is moved from the Thread-Safe Functions option to the

The Authorized Guide to the Single UNIX Specification, Version 4 23



System Interfaces System Interfaces Migration

Base.

dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
dbm_open, dbm_store

Purpose: Database functions.
XSl Synopsis:  #i ncl ude <ndbm h>

i nt dbm cl earerr(DBM *db) ;

voi d dbm cl ose( DBM *db) ;

i nt dbm del et e(DBM *db, dat um key) ;

i nt dbm error(DBM *db) ;

dat um dbm f et ch(DBM *db, datum key) ;

dat um dbm first key(DBM *db) ;

dat um dbm next key( DBM *db) ;

DBM *dbm open(const char *file, int open_flags,
node t file_node);

i nt dbm store(DBM *db, datum key, datum content,
i nt store_node);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #042 is applied so that the DESCRIPTION
permits newer implementations of the Berkeley DB interface.

difftime

Purpose: Compute the difference between two calendar time values.

Synopsis:  #i ncl ude <tine. h>
double difftinme(tinme_t tinel, tinme_t tine0);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

dirfd
Purpose: Extract the file descriptor used by a DIR stream.
Synopsis:  #i ncl ude <dirent. h>

int dirfd(DIR *dirp);

The dirfd() function returns a file descriptor referring to the same directory as the
dirp argument. This file descriptor is closed by a call to closedir ().

The dirfd() function is intended to be a mechanism by which an application may
obtain a file descriptor to use for the fchdir () function.

This interface was introduced because the Base Definitions volume of
IEEE Std 1003.1-2001 does not make public the DIR data structure. Applications
tend to use the fchdir() function on the file descriptor returned by this interface,
and this has proven useful for security reasons; in particular, it is a better technique
than others where directory names might change.

The description uses the term “a file descriptor” rather than “the file descriptor”.
The implication intended is that an implementation that does not use an fd for

24 A Source Book from The Open Group (2010)



System Interfaces Migration

Derivation:

Issue 7:

dirname
Purpose:

XSI Synopsis:

Derivation:

Issue 7:
div
Purpose:

Synopsis:

Derivation:

Issue 7:

dlclose
Purpose:

Synopsis:

Derivation:

Issue 7:

dlerror
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces

diropen () could still open() the directory to implement the dirfd() function. Such a

descriptor must be closed later during a call to closedir ().

An implementation that does not support file descriptors referring to directories

may fail with [ENOTSUP].

If it is necessary to allocate an fd to be returned by dirfd(), it should be done at the

time of a call to opendir ().

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,

Extended API Set Part 1.

First released in Issue 7.

Report the parent directory name of a file pathname.
#i ncl ude <l i bgen. h>

char *di rnane(char *path);

First released in Issue 4, Version 2.

The EXAMPLES section is revised.

Compute the quotient and remainder of an integer division.
#include <stdlib. h>

div_t div(int nuner, int denom

First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

No functional changes are made in this issue.

Close a dlopen () object.

#i ncl ude <dl fcn. h>

int dlclose(void *handl e);
First released in Issue 5.

The dlopen () function is moved from the XSI option to Base.

Get diagnostic information.
#i ncl ude <dl fcn. h>
char *dlerror(void);
First released in Issue 5.

The dlerror() function is moved from the XSI option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4

25



System Interfaces

X8I

26

dlopen
Purpose:

Synopsis:

Derivation:

Issue 7:

dlsym
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Gain access to an executable object file.

#i ncl ude <dl fcn. h>

voi d *dl open(const char *file, int node);

First released in Issue 5.

The dlopen () function is moved from the XSI option to the Base.

The EXAMPLES section is updated to refer to dlsym ().

Obtain the address of a symbol from a dlopen () object.

#i ncl ude <dl fcn. h>

void *dl sym(void *restrict handle, const char *restrict nane);
First released in Issue 5.

The disym () function is moved from the XSI option to the Base.

drand48, erand48, jrand48, lcong48, Irand48, mrand48, nrand48, seed48, srand48

Purpose:

Synopsis:

Derivation:

Issue 7:

dup, dup2
Purpose:

Synopsis:

Derivation:

Issue 7:

Generate uniformly distributed pseudo-random numbers.
#incl ude <stdlib. h>

doubl e drand48(void);

doubl e erand48(unsi gned short xsubi[3]);

| ong jrand48(unsi gned short xsubi[3]);

voi d | cong48(unsi gned short paranf7]);

| ong | rand48(void);

| ong nrand48(void);

| ong nrand48(unsi gned short xsubi[3]);

unsi gned short *seed48(unsi gned short seedl6v[3]);
voi d srand48(l ong seedval);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Duplicate an open file descriptor.
#i ncl ude <unistd. h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

First released in Issue 1. Derived from Issue 1 of the SVID.

SD5-XSH-ERN-187 is applied, clarifying several aspects of the behavior of dup2().

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

CX

duplocale
Purpose:

Synopsis:

Derivation:

Issue 7:

Duplicate a locale object.
#incl ude <l ocal e. h>

| ocal e_t dupl ocal e(l ocal e_t | ocobj);

The duplocale() function creates duplicate copy of the locale object referenced by
the locobj argument.

The use of the duplocale() function is recommended for situations where a locale
object is being used in multiple places, and it is possible that the lifetime of the
locale object might end before all uses are finished. Another reason to duplicate a
locale object is if a slightly modified form is needed. This can be achieved by a call
to newlocale () following the duplocale() call.

As with the newlocale() function, handles for locale objects created by the
duplocale () function should be released by a corresponding call to freelocale().

The following example shows a code fragment to create a slightly altered version
of an existing locale object. The function takes a locale object and a locale name and
it replaces the LC_TIME category data in the locale object with that from the
named locale.

#i ncl ude <l ocal e. h>

| ocal e_t
with changed Ic_ tine (locale t obj, const char *nane)

{

| ocale t retval = duplocale (obj);
if (retval !'= (locale_t) 0)
{
| ocal e_t changed = new ocal e (LC Tl ME_MASK, nane,
retval);
if (changed == (locale_t) 0)
/* An error occurred. Free all allocated resources. */
freelocale (retval);
retval = changed,;
}

return retval; }

}

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

First released in Issue 7.

The Authorized Guide to the Single UNIX Specification, Version 4 27



System Interfaces

X8I

X8I

28

encrypt

Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Encoding function (CRYPT).
#i ncl ude <uni std. h>

voi d encrypt (char bl ock[64], int edflag);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

endgrent, getgrent, setgrent

Purpose:

Synopsis:

Derivation:

Issue 7:

Group database entry functions.
#i ncl ude <grp. h>

voi d endgrent (voi d) ;
struct group *getgrent(void);
voi d setgrent (void);

First released in Issue 4, Version 2.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

endhostent, gethostent, sethostent

Purpose:

Synopsis:

Derivation:

Issue 7:

Network host database functions.
#i ncl ude <netdb. h>

voi d endhost ent (voi d);
struct hostent *gethostent(void);
voi d sethostent (int stayopen);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

No functional changes are made in this issue.

endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent

Purpose:

Synopsis:

Derivation:

Issue 7:

Network database functions.
#i ncl ude <netdb. h>

voi d endnetent (void);

struct netent *getnetbyaddr(uint32 t net, int type);
struct netent *getnetbynane(const char *nane);
struct netent *getnetent(void);

voi d setnetent(int stayopen);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent
Purpose: Network protocol database functions.
Synopsis:  #i ncl ude <netdb. h>

voi d endpr ot oent (void);

struct protoent *getprotobynane(const char *nane);
struct protoent *getprotobynunber(int proto);
struct protoent *getprotoent(void);

voi d setprotoent(int stayopen);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb).

Issue 7: No functional changes are made in this issue.

endpwent, getpwent, setpwent
Purpose: User database functions.
XSl Synopsis:  #i ncl ude <pwd. h>

voi d endpwent (voi d);
struct passwd *get pwent (void);
voi d set pwent (voi d);

Derivation: First released in Issue 4, Version 2.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
The EXAMPLES section is revised.

endservent, getservbyname, getservbyport, getservent, setservent
Purpose: Network services database functions.
Synopsis:  #i ncl ude <netdb. h>

voi d endservent (voi d);
struct servent *getservbynane(const char *nane,
const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
voi d setservent (int stayopen);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: SD5-XBD-ERN-14 is applied, clarifying the way in which port numbers are
converted to and from network byte order.

The Authorized Guide to the Single UNIX Specification, Version 4 29



System Interfaces System Interfaces Migration

endutxent, getutxent, getutxid, getutxline, pututxline, setutxent
Purpose: User accounting database functions.
XSl Synopsis:  #i ncl ude <ut npx. h>

voi d endut xent (voi d);

struct utnpx *get utxent (void);

struct utnmpx *getutxid(const struct utnpx *id);
struct utnpx *getutxline(const struct utnpx *line);
struct utnpx *pututxline(const struct utnpx *utnpx);
voi d setut xent (void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

erf, erff, erfl
Purpose: Error functions.
Synopsis:  #i ncl ude <math. h>

doubl e erf (double x);
float erff(float x);
| ong doubl e erfl (long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

erfc, erfcf, erfcl
Purpose: Complementary error functions.
Synopsis:  #i ncl ude <math. h>

doubl e erfc(double x);
float erfcf(float x);
| ong doubl e erfcl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
errno
Purpose: Error return value.

Synopsis:  #i ncl ude <errno. h>
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

30 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

environ, execl, execle, execlp, execv, execve, execvp, fexecve
Purpose: Execute a file.
Synopsis:  #i ncl ude <uni std. h>

extern char **environ
i nt execl (const char *path, const char *argO,
/*, (char *)0 */);

i nt execle(const char *path, const char *arg0, ... /*,
(char *)0, char *const envp[]*/);
i nt execlp(const char *file, const char *arg0, ... /*,

(char *)0 */);
i nt execv(const char *path, char *const argv[]);
i nt execve(const char *path, char *const argv[],
char *const envp[]);
i nt execvp(const char *file, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

The fexecve() function is equivalent to the execve() function except that the file to be
executed is determined by the file descriptor fd instead of a pathname. The file
offset of fd is ignored.

The purpose of the fexecve() function is to enable executing a file which has been
verified to be the intended file. It is possible to actively check the file by reading
from the file descriptor and be sure that the file is not exchanged for another
between the reading and the execution. Alternatively, an function like openat () can
be used to open a file which has been found by reading the content of a directory
using readdir ().

Since execute permission is checked by fexecve(), the file descriptor fd need not
have been opened with the O_EXEC flag. However, if the file to be executed denies
read and write permission for the process preparing to do the exec, the only way to
provide the fd to fexecve() will be to use the O_EXEC flag when opening fd. In this
case, the application will not be able to perform a checksum test since it will not be
able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or
O_WRONLY mode, the file descriptor can be used to read, read and write, or write
the file, respectively, even if the mode of the file changes after the file was opened.
Using the O_EXEC open mode is different; fexecve() will ignore the mode that was
used when the file descriptor was opened and the exec will fail if the mode of the
file associated with fd does not grant execute permission to the calling process at
the time fexecve() is called.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #047 is applied, adding a warning for
execle(), execve() and fexecve() to the APPLICATION USAGE that the new process
might be invoked in a nonconforming environment if the envp array does not
contain implementation-defined variables required by the implementation to
provide a conforming environment. See the _CS_V7_ENV entry in <unistd.h>, and
confstr(), for details.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The fexecve() function is added from The Open Group Technical Standard, 2006,

The Authorized Guide to the Single UNIX Specification, Version 4 31



System Interfaces System Interfaces Migration

32

Extended API Set Part 2.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, Threads, and Timers options is moved to the Base.

Changes are made related to support for finegrained timestamps.

exit

Purpose: Terminate a process.

Synopsis: ~ #i ncl ude <stdlib. h>
void exit(int status);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #085 is applied, deleting the reference to
removal of files created by tmpfile().

exp, expf, expl

Purpose: Exponential function.

Synopsis:  #i ncl ude <math. h>

doubl e exp(doubl e x);
float expf(float x);
| ong doubl e expl (1 ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
exp2, exp2f, exp2l
Purpose: Exponential base 2 functions.

Synopsis:  #i ncl ude <math. h>

doubl e exp2(doubl e x);
float exp2f(float Xx);
| ong doubl e exp2l (I ong doubl e x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

expml, expm1f, expm1l
Purpose: Compute exponential functions.
Synopsis:  #i ncl ude <math. h>

doubl e expmi(doubl e Xx);
float expmif(float Xx);
| ong doubl e expnil (1 ong doubl e Xx);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

fabs, fabsf, fabsl
Purpose: Absolute value function.
Synopsis:  #i ncl ude <math. h>
doubl e fabs(double x);
float fabsf(float x);
| ong doubl e fabsl (I ong double x);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
fattach
Purpose: Attach a STREAMS-based file descriptor to a file in the file system name space

OB XSR  Synopsis:

Derivation:

Issue 7:

fchdir
Purpose:

Synopsis:

Derivation:

Issue 7:

fchmod
Purpose:

Synopsis:

Derivation:

Issue 7:

(STREAMS).
#i ncl ude <stropts. h>

int fattach(int fildes, const char *path);

First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The fattach() function is marked obsolescent.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Change working directory.

#i ncl ude <uni std. h>

int fchdir(int fildes);
First released in Issue 4, Version 2.

The fchdir() function is moved from the XSI option to the Base.

Change mode of a file.

#i ncl ude <sys/stat. h>

int fchnod(int fildes, nbde_t node);
First released in Issue 4, Version 2.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 33



System Interfaces System Interfaces Migration

fchown
Purpose: Change owner and group of a file.
Synopsis:  #i ncl ude <uni std. h>
int fchowm(int fildes, uid t owner, gid_ t group);

Derivation: First released in Issue 4, Version 2.

Issue 7: Functionality relating to XSI STREAMS is marked obsolescent.
fclose
Purpose: Close a stream.

Synopsis:  #i ncl ude <stdio. h>
int fclose(FILE *stream;
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction
of file descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from
The Open Group Technical Standard, 2006, Extended API Set Part 1.

Changes are made related to support for finegrained timestamps.

fentl
Purpose: File control.
Synopsis:  #i ncl ude <fcntl. h>
int fentl(int fildes, int cnd, ...);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #150 is applied, clarifying the file status
flags returned when cmd is F_GETFL.

Austin  Group Interpretation 1003.1-2001 #171 is applied, adding the
F_DUPFD_CLOEXEC flag.

The optional <unistd.h> header is removed from this function, since <fcntl.h>
now defines SEEK_SET, SEEK_CUR, and SEEK_END as part of the Base.
fdatasync
Purpose: Synchronize the data of a file (REALTIME).
SIo Synopsis:  #i ncl ude <uni std. h>

int fdatasync(int fildes);
Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

Issue 7: No functional changes are made in this issue.

34 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

fdetach
Purpose:

OB XSR  Synopsis:

Detach a name from a STREAMS-based file descriptor (f3STREAMS{P).
#i ncl ude <stropts. h>

i nt fdetach(const char *path);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.
The fdetach () function is marked obsolescent.
The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fdim, fdimf, fdiml

Purpose: Compute positive difference between two floating-point numbers.

Synopsis:  #i ncl ude <math. h>
doubl e fdi mdoubl e x, double y);
float fdinf(float x, float y);
| ong double fdim (Il ong double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fdopen

Purpose: Associate a stream with a file descriptor.

cx Synopsis:  #i ncl ude <stdi o. h>

FI LE *fdopen(int fildes, const char *nopde);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-149 is applied, adding the {STREAM_MAX]} [EMFILE] error
condition.
Changes are made related to support for finegrained timestamps.

fdopendir, opendir

Purpose: Open directory associated with file descriptor.

Synopsis:  #i ncl ude <dirent. h>

DIR *fdopendir(int fd);
DI R *opendir(const char *dirnane);

The fdopendir() function is equivalent to the opendir() function except that the
directory is specified by a file descriptor rather than by a name. The file offset
associated with the file descriptor at the time of the call determines which entries
are returned.

The Authorized Guide to the Single UNIX Specification, Version 4 35



System Interfaces

36

System Interfaces Migration

Upon successful return from fdopendir(), the file descriptor is under the control of
the system, and if any attempt is made to close the file descriptor, or to modify the
state of the associated description, other than by means of closedir(), readdir(),
readdir_r(), or rewinddir(), the behavior is undefined. Upon calling closedir() the
file descriptor is closed.

The purpose of the fdopendir() function is to enable opening files in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to opendir (), resulting
in unspecified behavior.

The following example program searches through a given directory looking for
files whose name does not begin with a dot and whose size is larger than 1 MiB.

#i ncl ude <stdio. h>
#i ncl ude <dirent. h>
#i ncl ude <fcntl. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdint. h>
#i ncl ude <stdlib. h>
#i ncl ude <unistd. h>

i nt

mai n(int argc, char *argv[])

{

struct stat statbuf;

D R *d;
struct dirent *dp;
int dfd, ffd;
if ((d = fdopendir((dfd = open("./tnp", O RDONLY))))
== NULL) {
fprintf(stderr, "Cannot open ./tnp directory\n");
exit(1);
}
while ((dp = readdir(d)) != NULL) {
if (dp->d_nane[0] == ".")
conti nue;

/* there is a possible race condition here as the file
* could be renaned between the readdir and the open */
if ((ffd = openat(dfd, dp->d_nanme, O RDONLY)) == -1) {
perror (dp->d_nane);
conti nue;
}
if (fstat(ffd, &statbuf) == 0 && statbuf.st_size >
(1024*1024)) {
/* found it ... */
printf("%: %dK\n", dp->d_nane,
(intmax_t) (statbuf.st_size / 1024));

}
close(ffd);

}
closedir(d); // note this inplicitly closes dfd

return O;

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation: First released in Issue 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The fdopendir() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

An additional example is added.

feclearexcept
Purpose: Clear floating-point exception.
Synopsis:  #i ncl ude <fenv. h>
i nt feclearexcept(int excepts);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fegetenv, fesetenv
Purpose: Get and set current floating-point environment.
Synopsis:  #i ncl ude <fenv. h>

int fegetenv(fenv_t *envp);
int fesetenv(const fenv_t *envp);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fegetexceptflag, fesetexceptflag
Purpose: Get and set floating-point status flags.
Synopsis:  #i ncl ude <fenv. h>

int fegetexceptflag(fexcept t *flagp, int excepts);
int fesetexceptflag(const fexcept t *flagp, int excepts);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fegetround, fesetround
Purpose: Get and set current rounding direction.
Synopsis:  #i ncl ude <fenv. h>

i nt fegetround(void);
int fesetround(int round);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 37



System Interfaces System Interfaces Migration

38

feholdexcept
Purpose: Save current floating-point environment.
Synopsis:  #i ncl ude <fenv. h>
i nt fehol dexcept (fenv_t *envp);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
feof
Purpose: Test end-of-file indicator on a stream.

Synopsis:  #i ncl ude <stdio. h>
int feof (FILE *stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
feraiseexcept
Purpose: Raise floating-point exception.

Synopsis:  #i ncl ude <fenv. h>
i nt feraiseexcept(int excepts);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
ferror
Purpose: Test error indicator on a stream.

Synopsis:  #i ncl ude <stdio. h>
int ferror(FILE *stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
fetestexcept
Purpose: Test floating-point exception flags.

Synopsis:  #i ncl ude <fenv. h>
int fetestexcept(int excepts);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

feupdateenv
Purpose: Update floating-point environment.
Synopsis:  #i ncl ude <fenv. h>
i nt feupdateenv(const fenv_t *envp);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
fflush
Purpose: Flush a stream.

Synopsis:  #i ncl ude <stdio. h>
int fflush(FILE *stream;
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction
of file descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from
The Open Group Technical Standard, 2006, Extended API Set Part 1.

The EXAMPLES section is revised.

Changes are made related to support for finegrained timestamps.

ffs
Purpose: Find first set bit.
XSl Synopsis:  #i ncl ude <strings. h>
int ffs(int i);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
fgetc
Purpose: Get a byte from a stream.

Synopsis:  #i ncl ude <stdio. h>
int fgetc(FILE *strean);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of
functions that mark the last data access timestamp for update.

The Authorized Guide to the Single UNIX Specification, Version 4 39



System Interfaces

fgetpos
Purpose:

Synopsis:

Derivation:

Issue 7:

fgets
Purpose:

Synopsis:

Derivation:

Issue 7:

fgetwc
Purpose:

Synopsis:

Derivation:

Issue 7:

fgetws
Purpose:

Synopsis:

Derivation:

Issue 7:

40

System Interfaces Migration

Get current file position information.

#i ncl ude <stdio. h>

int fgetpos(FILE *restrict stream fpos_t *restrict pos);
First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

No functional changes are made in this issue.

Get a string from a stream.

#i ncl ude <stdio. h>

char *fgets(char *restrict s, int n, FILE *restrict strean)
First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of
functions that mark the last data access timestamp for update.

Get a wide-character code from a stream.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint t fgetwc(FILE *stream;
First released in Issue 4. Derived from the MSE working draft.

Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

Changes are made related to support for finegrained timestamps.

Get a wide-character string from a stream.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wchar _t *fgetws(wchar _t *restrict ws, int n
FILE *restrict stream;

First released in Issue 4. Derived from the MSE working draft.

Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

Changes are made related to support for finegrained timestamps.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

CX

CX

fileno
Purpose:

Synopsis:

Derivation:

Issue 7:

Map a stream pointer to a file descriptor.
#incl ude <stdio. h>
int fileno(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

SD5-XBD-ERN-99 is applied, changing the definition of the [EBADEF] error.

flockfile, ftrylockfile, funlockfile

Purpose:

Synopsis:

Derivation:

Issue 7:

Stdio locking functions.
#i ncl ude <stdio. h>

void flockfil e(FILE *file);
int ftrylockfile(FILE *file);
voi d funl ockfil e(FILE *file);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The flockfile(), ftrylockfile(), and funlockfile() functions are moved from the Thread-
Safe Functions option to the Base.

floor, floorf, floorl

Purpose:

Synopsis:

Derivation:

Issue 7:

Floor function.
#i ncl ude <mat h. h>

doubl e fl oor(double x);
float floorf(float Xx);
| ong doubl e floorl (long double Xx);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

fma, fmaf, fmal

Purpose:

Synopsis:

Derivation:

Issue 7:

Floating-point multiply-add.
#i ncl ude <math. h>

doubl e frma(doubl e x, double y, double z);
float frmaf(float x, float y, float z);
| ong doubl e fmal (1 ong double x, |Iong double y, |ong double z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #57 (SD5-XSH-ERN-69) is
applied, adding a “may fail” range error for non-MX systems.

The Authorized Guide to the Single UNIX Specification, Version 4 41



System Interfaces System Interfaces Migration

CX

42

fmax, fmaxf, fmaxl
Purpose: Determine maximum numeric value of two floating-point numbers.
Synopsis:  #i ncl ude <math. h>

doubl e frax(double x, double y);
float frmaxf(float x, float y)
| ong doubl e fmaxl (I ong double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #007 is applied, adding MX shading
where the text refers to NaNs.

fmemopen

Purpose: Open a memory buffer stream.

Synopsis:  #i ncl ude <stdi o. h>

FI LE *f nenopen(void *restrict buf, size_t size,
const char *restrict node);

The fmemopen () function associates the buffer given by the buf and size arguments
with a stream.

This interface has been introduced to eliminate many of the errors encountered in
the construction of strings, notably overflowing of strings. This interface prevents
overflow.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

fmin, fminf, fminl
Purpose: Determine minimum numeric value of two floating-point numbers.
Synopsis:  #i ncl ude <math. h>

doubl e fm n(double x, double y);
float fmnf(float x, float y);
| ong double fmnl(long double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #008 is applied, adding MX shading
where the text refers to NaNs.

fmod, fmodf, fmodl

Purpose: Floating-point remainder value function.

Synopsis:  #i ncl ude <math. h>

doubl e fnod(double x, double y);
float fnodf(float x, float y);
| ong doubl e fnodl (I ong double x, |ong double y);

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

fmtmsg

Purpose:

XSI Synopsis:

Derivation:

Issue 7:

fnmatch
Purpose:

Synopsis:

Derivation:

Issue 7:

fopen
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Display a message in the specified format on standard error and/or a system
console.

#i ncl ude <fntnsg. h>

int fntnsg(long classification, const char *| abel
int severity, const char *text,
const char *action, const char *tag);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Match a filename or a pathname.
#i ncl ude <fnmatch. h>

int fnmatch(const char *pattern, const char *string,
int flags);

First released in Issue 4. Derived from the .

No functional changes are made in this issue.

Open a stream.
#i ncl ude <stdio. h>

FI LE *fopen(const char *restrict fil enane,
const char *restrict node);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying the file creation
mode.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements
for the flags set on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error
condition from a “may fail” to a “shall fail”.

Changes are made related to support for finegrained timestamps.

The Authorized Guide to the Single UNIX Specification, Version 4 43



System Interfaces System Interfaces Migration

fork
Purpose: Create a new process.
Synopsis:  #i ncl ude <uni std. h>
pidt fork(void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #080 is applied, clarifying the status of
asynchronous input and asynchronous output operations and asynchronous
control lists in the DESCRIPTION.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, Timers, and Threads options is moved to the Base.

Functionality relating to message catalog descriptors is moved from the XSI option

to the Base.
fpathconf, pathconf
Purpose: Get configurable pathname variables.

Synopsis:  #i ncl ude <uni std. h>

| ong fpathconf(int fildes, int nane);
| ong pat hconf(const char *path, int nane);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

Austin Group Interpretation 1003.1-2001 #160 is applied, clarifying the
requirements related to variables that have no limit.

Changes are made related to support for finegrained timestamps.
The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fpclassify

Purpose: Classify real floating type.

Synopsis:  #i ncl ude <math. h>
int fpclassify(real-floating x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

44 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

dprintf, fprintf, printf, snprintf, sprintf

Purpose:
Synopsis:

CX

Derivation:

Issue 7:

fputc
Purpose:

Synopsis:

Derivation:

Issue 7:

fputs
Purpose:

Synopsis:

Derivation:

Issue 7:

Print formatted output.

#i ncl ude <stdi o. h>

int dprintf(int fildes, const char *restrict format, ...);
int fprintf(FILE *restrict stream
const char *restrict format, ...);
int printf(const char *restrict format, ...);
int snprintf(char *restrict s, size t n
const char *restrict format, ...);
int sprintf(char *restrict s,
const char *restrict format, ...);

The dprintf() function is equivalent to the fprintf() function, except that dprintf()
writes output to the file associated with the file descriptor specified by the fildes
argument rather than placing output on a stream.

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin  Group Interpretation 1003.1-2001 #161 is applied, updating the
DESCRIPTION of the 0 flag.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is
applied, revising the description of g and G

The dprintf() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Functionality relating to the %$ form of conversion specification and the
<apostrophe> flag is moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

Put a byte on a stream.

#i ncl ude <stdio. h>

int fputc(int ¢, FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

Changes are made related to support for finegrained timestamps.

Put a string on a stream.

#i ncl ude <stdi o. h>

int fputs(const char *restrict s, FILE *restrict stream
First released in Issue 1. Derived from Issue 1 of the SVID.

Changes are made related to support for finegrained timestamps.

The Authorized Guide to the Single UNIX Specification, Version 4 45



System Interfaces System Interfaces Migration

fputwc
Purpose: Put a wide-character code on a stream.

Synopsis:  #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

wint t fputwe(wchar _t we, FILE *strean);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Changes are made related to support for finegrained timestamps.
fputws
Purpose: Put a wide-character string on a stream.

Synopsis:  #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

int fputws(const wchar _t *restrict ws, FILE *restrict stream

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Changes are made related to support for finegrained timestamps.
fread
Purpose: Binary input.

Synopsis:  #i ncl ude <stdio. h>

size t fread(void *restrict ptr, size t size, size_ t nitens,
FILE *restrict stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.
free
Purpose: Free allocated memory.

Synopsis:  #i ncl ude <stdlib. h>
void free(void *ptr);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The DESCRIPTION is updated to clarify that if the pointer returned is not by a
function that allocates memory as if by malloc( ), then the behavior is undefined.
freeaddrinfo, getaddrinfo
Purpose: Get address information.

Synopsis:  #i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

void freeaddrinfo(struct addrinfo *ai);

i nt getaddrinfo(const char *restrict nodenane,
const char *restrict servnane,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

46 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: Austin Group Interpretation 1003.1-2001 #013 is applied, removing the
[EAI_OVERFLOW] error code.

Austin Group Interpretation 1003.1-2001 #146 is applied, eliminating the use of
“may” in relation to the hints argument.

An example is added.
freelocale
Purpose: Free resources allocated for a locale object.
(@ Synopsis:  #i ncl ude <l ocal e. h>

voi d freel ocal e(l ocale_t |ocobj);

The freelocale() function causes the resources allocated for a locale object returned
by a call to the newlocale() or duplocale() functions to be released.

The following example shows a code fragment to free a locale object created by
newlocale():

#i ncl ude <l ocal e. h>

/* Every locale object allocated with new ocal e() should be
* freed using freelocal e():
*/

| ocale t |oc;
/* Get the locale. */
loc = newl ocale (LC_CTYPE_MASK | LC TI ME_MASK, "locnanme", NULL);

/* ... Use the locale object ... */

/* Free the local e object resources. */
freelocale (loc);

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,

Extended API Set Part 4.
Issue 7: First released in Issue 7.
freopen
Purpose: Open a stream.

Synopsis:  #i ncl ude <stdio. h>

FILE *freopen(const char *restrict fil enane,
const char *restrict node, FILE *restrict stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #043 is applied, clarifying that the
freopen () function allocates a file descriptor as per open ().

The Authorized Guide to the Single UNIX Specification, Version 4 47



System Interfaces System Interfaces Migration

CX

48

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements
for the flags set on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
SD5-XSH-ERN-150 is applied, clarifying the DESCRIPTION.
SD5-XSH-ERN-219 is applied, adding advice to the APPLICATION USAGE
relating to the use of a NULL filename argument.

frexp, frexpf, frexpl

Purpose: Extract mantissa and exponent from a double precision number.

Synopsis:  #i ncl ude <math. h>

doubl e frexp(double num int *exp);
float frexpf(float num int *exp);
| ong doubl e frexpl (I ong double num int *exp);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fscanf, scanf, sscanf
Purpose: Convert formatted input.
Synopsis:  #i ncl ude <stdio. h>

int fscanf(FILE *restrict stream

const char *restrict format, ...);
i nt scanf(const char *restrict format, ...);
i nt sscanf(const char *restrict s,

const char *restrict format, ...);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

SD5-XSH-ERN-9 is applied, correcting fscanf( ) to scanf() in the DESCRIPTION.
SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ’ mi .

Functionality relating to the %m$ form of conversion specification is moved from
the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

fseek, fseeko
Purpose: Reposition a file-position indicator in a stream.
Synopsis:  #i ncl ude <stdio. h>

int fseek(FILE *stream |ong offset, int whence);
int fseeko(FILE *stream off _t offset, int whence);

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

fsetpos
Purpose:

Synopsis:

Derivation:

Issue 7:

fstat
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 1. Derived from Issue 1 of the SVID.

Changes are made related to support for finegrained timestamps.

Set current file position.

#i ncl ude <stdio. h>

int fsetpos(FILE *stream const fpos_t *pos);

First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.
SD5-XSH-ERN-220 is applied, changing the first [EPIPE] to [ESPIPE].

Get file status.

#i ncl ude <sys/stat. h>

int fstat(int fildes, struct stat *buf);
First released in Issue 1. Derived from Issue 1 of the SVID.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file
types st_nlink applies.

Changes are made related to support for finegrained timestamps.

fstatat, Istat, stat

Purpose:

Synopsis:

Get file status.
#i ncl ude <sys/stat. h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);

int |stat(const char *restrict path,
struct stat *restrict buf);

int stat(const char *restrict path,
struct stat *restrict buf);

The fstatat () function is equivalent to the stat() and Istat() functions, except in the
case where path specifies a relative path. In this case the status is retrieved from a
file relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag controls whether fchownat() behaves like
stat() or Istat(): if AT_SYMLINK_NOFOLLOW is set and path names a symbolic
link, the status of the symbolic link is returned.

The purpose of the fstatat() function is to obtain the status of files in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to stat() or Istat(),
resulting in unspecified behavior. By opening a file descriptor for the target
directory and using the fstatat() function it can be guaranteed that the file for
which status is returned is located relative to the desired directory.

The Authorized Guide to the Single UNIX Specification, Version 4 49



System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file
types st_nlink applies.

The fstatat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The Istat () function is now required to return meaningful data for symbolic links in
all stat structure fields, except for the permission bits of st_mode.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fstatvfs, statvfs

Purpose: Get file system information.

Synopsis:  #i ncl ude <sys/statvfs. h>

int fstatvfs(int fildes, struct statvfs *buf);
int statvfs(const char *restrict path,
struct statvfs *restrict buf);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

SD5-XSH-ERN-68 is applied, correcting the EXAMPLES section.
The fstatvfs() and statvfs() functions are moved from the XSI option to the Base.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a

directory.
fsync
Purpose: Synchronize changes to a file.
FSC Synopsis:  #i ncl ude <uni std. h>

int fsync(int fildes);

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

50 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

ftell, ftello
Purpose:

Synopsis:

CX

Derivation:

Issue 7:

ftok
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

ftruncate
Purpose:

Synopsis:

Derivation:

Issue 7:

Return a file offset in a stream.
#i ncl ude <stdio. h>

long ftell (FILE *stream;
off t ftell o(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Generate an IPC key.
#i ncl ude <sys/ipc. h>

key t ftok(const char *path, int id);

First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Truncate a file to a specified length.

#i ncl ude <uni std. h>

int ftruncate(int fildes, off _t length);
First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #056 is applied, revising the ERRORS
section (although the [EINVAL] “may fail” error was subsequently removed
during review of the XSI option).

Functionality relating to the Memory Protection and Memory Mapped Files
options is moved to the Base.

The DESCRIPTION is updated so that a call to ftruncate() when the file is smaller
than the size requested will increase the size of the file. Previously, non-XSI-
conforming implementations were allowed to increase the size of the file or fail.

Changes are made related to support for finegrained timestamps.

The Authorized Guide to the Single UNIX Specification, Version 4 51



System Interfaces System Interfaces Migration

ftw
Purpose: Traverse (walk) a file tree.
oB xsI  Synopsis:  #i ncl ude <ftw. h>

int ftw(const char *path, int (*fn)(const char *,
const struct stat *ptr, int flag), int ndirs);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The ftw() function is marked obsolescent. Applications should use the nftw()
function instead.

futimens, utimensat, utimes
Purpose: Set file access and modification times.
Synopsis:  #i ncl ude <sys/stat. h>

int futimens(int fd, const struct tinespec tines[2]);
int utinensat(int fd, const char *path,
const struct timespec tinmes[2], int flag);

XSI #i ncl ude <sys/tine. h>

int utines(const char *path, const struct tinmeval tines[2]);

The futimens() and utimensat () functions set the access and modification times of a
file to the values of the times argument. The futimens() function changes the times
of the file associated with the file descriptor fd. The utimensat() function changes
the times of the file pointed to by the path argument, relative to the directory
associated with the file descriptor fd.

The times argument is an array of two timespec structures. The first array member
represents the date and time of last access, and the second member represents the
date and time of last modification. The times in the timespec structure are
measured in seconds and nanoseconds since the Epoch. The file’s relevant
timestamp is set to the greatest value supported by the file system that is not
greater than the specified time.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the
file’s relevant timestamp is set to the greatest value supported by the file system
that is not greater than the current time. If the tv_nsec field has the special value
UTIME_OMIT, the file’s relevant timestamp is not changed. In either case, the
tv_sec field is ignored.

If utimensat() is passed a relative path in the path argument, the file to be used is
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag can be used to specify that if path names a
symbolic link, then the access and modification times of the symbolic link are

52 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

fwide
Purpose:

Synopsis:

Derivation:

Issue 7:

changed.

The purpose of the utimensat() function is to set the access and modification time
of files in directories other than the current working directory without exposure to
race conditions. Any part of the path of a file could be changed in parallel to a call
to utimes(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the utimensat() function it can be guaranteed that the
changed file is located relative to the desired directory.

First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The LEGACY marking is removed from utimes().

The utimensat() function (renamed from futimesat()) is added from The Open
Group Technical Standard, 2006, Extended API Set Part 2, and changed to allow
modifying a symbolic link by adding a flag argument.

The futimens() function is added.
Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Set stream orientation.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int fwide(FILE *stream int node);
First released in Issue 5. Included for alignment with .

No functional changes are made in this issue.

fwprintf, swprintf, wprintf

Purpose:

Synopsis:

Derivation:

Issue 7:

Print formatted wide-character output.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int fwprintf(FILE *restrict stream

const wchar_t *restrict format, ...);
int swprintf(wchar _t *restrict ws, size t n
const wchar_t *restrict format, ...);
int wprintf(const wchar _t *restrict format, ...);

First released in Issue 5. Included for alignment with .

Austin  Group Interpretation 1003.1-2001 #161 is applied, updating the
DESCRIPTION of the 0 flag.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is

The Authorized Guide to the Single UNIX Specification, Version 4 53



System Interfaces System Interfaces Migration

54

applied, revising the description of g and G

Functionality relating to the "9%m$" form of conversion specification and the
<apostrophe> flag is moved from the XSI option to the Base.

The [EOVERFLOW] error is added for swprintf().

Changes are made related to support for finegrained timestamps.

fwrite
Purpose: Binary output.
Synopsis:  #i ncl ude <stdi o. h>

size t fwite(const void *restrict ptr, size_t size,
size t nitems, FILE *restrict stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

fwscanf, swscanf, wscanf
Purpose: Convert formatted wide-character input.

Synopsis: ~ #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

int fwscanf(FILE *restrict stream

const wchar_t *restrict format, ...);
i nt swscanf(const wchar _t *restrict ws,
const wchar_t *restrict format, ...);
i nt wscanf(const wchar _t *restrict format, ...);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ’ mi .

Functionality relating to the " %m$" form of conversion specification is moved from
the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

gai_strerror
Purpose: Address and name information error description.
Synopsis:  #i ncl ude <netdb. h>

const char *gai _strerror(int ecode);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

getc
Purpose:

Synopsis:

Derivation:

Issue 7:

Get a byte from a stream.

#i ncl ude <stdio. h>

int getc(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked

Purpose:

X Synopsis:

Derivation:

Issue 7:

getchar
Purpose:

Synopsis:

Derivation:

Issue 7:

getcwd
Purpose:

Synopsis:

Derivation:

Issue 7:

Stdio with explicit client locking.
#incl ude <stdio. h>

int getc_unl ocked(FlLE *stream;

i nt getchar _unl ocked(void);

int putc_unlocked(int c, FILE *stream
i nt putchar_unl ocked(int c);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked()
functions are moved from the Thread-Safe Functions option to the Base.

Get a byte from a stdin stream.

#i ncl ude <stdio. h>

i nt getchar(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get the pathname of the current working directory.

#i ncl ude <uni std. h>

char *getcwd(char *buf, size t size);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #140 is applied, changing the text for
consistency with the pwd utility, adding text to address the case where the current
directory is deeper in the file hierarchy than {PATH_MAX} bytes, and adding the
requirements relating to pathnames beginning with two <slash> characters.

The Authorized Guide to the Single UNIX Specification, Version 4 55



System Interfaces System Interfaces Migration

getdate
Purpose: Convert user format date and time.
XSl Synopsis:  #i ncl ude <tinme. h>

struct tm *getdate(const char *string);

Derivation: First released in Issue 4, Version 2.

Issue 7: The description of the getdate_err value is expanded.
getdelim, getline
Purpose: Read a delimited record from stream.

cx Synopsis:  #i ncl ude <stdi o. h>

ssize_t getdelin(char **restrict lineptr, size_t *restrict n,
int delimter, FILE *restrict stream;

ssize_t getline(char **restrict lineptr, size_ t *restrict n,
FILE *restrict stream;

The getdelim () function reads from stream until it encounters a character matching
the delimiter character.

The getline() function is equivalent to the getdelim() function with the delimiter
character equal to the <newline> character.

These functions are widely used to solve the problem that the fgets() function has
with long lines. The functions automatically enlarge the target buffers if needed.
These are especially useful since they reduce code needed for applications.

Application writers should note that setting *lineptr to a null pointer and *n to zero
are allowed and a recommended way to start parsing a file.

The ferror() or feof() functions should be used to distinguish between an error
condition and an end-of-file condition.

Although a NUL terminator is always supplied after the line, note that
strlen(*lineptr) will be smaller than the return value if the line contains embedded

NUL characters.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

getegid
Purpose: Get the effective group ID.
Synopsis:  #i ncl ude <uni std. h>
gid t getegid(void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

56 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

getenv
Purpose:

Synopsis:

Derivation:

Issue 7:

geteuid
Purpose:

Synopsis:

Derivation:

Issue 7:
getgid
Purpose:

Synopsis:

Derivation:

Issue 7:

Get value of an environment variable.

#i ncl ude <stdlib. h>

char *getenv(const char *nane);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #062 is applied, clarifying that a call to
putenv() may also cause the string to be overwritten.

Austin Group Interpretation 1003.1-2001 #148 is applied, adding the FUTURE
DIRECTIONS.

Get the effective user ID.

#i ncl ude <uni std. h>

uid t geteuid(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get the real group ID.

#i ncl ude <uni std. h>

gid t getgid(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

getgrgid, getgrgid_r

Purpose:

Synopsis:

Derivation:

Issue 7:

Get group database entry for a group ID.
#i ncl ude <grp. h>

struct group *getgrgid(gid t gid);
int getgrgid r(gid t gid, struct group *grp, char *buffer
size_ t bufsize, struct group **result);

First released in Issue 1. Derived from System V Release 2.0.
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf(_SC_GETGR_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getgrgid_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

The Authorized Guide to the Single UNIX Specification, Version 4 57



System Interfaces System Interfaces Migration

getgrnam, getgrnam_r
Purpose: Search group database for a name.
Synopsis:  #i ncl ude <grp. h>

struct group *getgrnam(const char *nane);

int getgrnamr(const char *name, struct group *grp
char *buffer, size_t bufsize,
struct group **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #081 is applied, clarifying the RETURN
VALUE section.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf(_SC_GETGR_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getgrnam_r () function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

getgroups

Purpose: Get supplementary group IDs.

Synopsis:  #i ncl ude <uni std. h>
int getgroups(int gidsetsize, gid_t grouplist[]);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).
Issue 7: No functional changes are made in this issue.
gethostid
Purpose: Get an identifier for the current host.
XSl Synopsis:  #i ncl ude <uni std. h>

| ong get hosti d(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

58 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

OB XSI

OB XSR

gethostname

Purpose:

Synopsis:

Derivation:

Issue 7:

Get name of current host.
#i ncl ude <uni std. h>
i nt gethost nane(char *nane, size_t namnel en);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

No functional changes are made in this issue.

getitimer, setitimer

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set value of interval timer.
#i ncl ude <sys/tine. h>

int getitiner(int which, struct itinmerval *val ue);
int setitiner(int which,

const struct itinmerval *restrict val ue,

struct itinmerval *restrict oval ue);

First released in Issue 4, Version 2.

The getitimer() and setitimer() functions are marked obsolescent. Applications
should use the timer_gettime() and timer_settime () functions, respectively.

getlogin, getlogin_r

Purpose: Get login name.
Synopsis:  #i ncl ude <uni std. h>
char *getl ogi n(void);
int getlogin_r(char *nane, size_t nanesize);
Derivation: First released in Issue 1. Derived from System V Release 2.0.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
The getlogin_r() function is moved from the Thread-Safe Functions option to the
Base.
getmsg, getpmsg
Purpose: Receive next message from a STREAMS file (STREAMS).
Synopsis:  #i ncl ude <stropts. h>
int getnsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict flagsp);
int getpnsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp
int *restrict flagsp);
Derivation: First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4 59



System Interfaces System Interfaces Migration

60

Issue 7: The getmsg () and getpmsg () functions are marked obsolescent.
getnameinfo
Purpose: Get name information.

Synopsis: ~ #i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

i nt getnanei nfo(const struct sockaddr *restrict sa,
socklen_t salen, char *restrict node,
sockl en_t nodel en, char *restrict service,
socklen_t servicelen, int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: SD5-XSH-ERN-127 is applied, clarifying the behavior if the address is the IPv6
unspecified address.

getopt, optarg, optert, optind, optopt

Purpose: Command option parsing.

Synopsis:  #i ncl ude <uni std. h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int opterr, optind, optopt;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
getpeername
Purpose: Get the name of the peer socket.

Synopsis:  #i ncl ude <sys/socket. h>

i nt getpeernanme(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_|en);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5

(XCU5).
Issue 7: No functional changes are made in this issue.
getpgid
Purpose: Get the process group ID for a process.

Synopsis:  #i ncl ude <uni std. h>
pidt getpgid(pid_t pid);
Derivation: First released in Issue 4, Version 2.

Issue 7: The getpgid () function is moved from the XSI option to the Base.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

getpgrp
Purpose:

Synopsis:

Derivation:

Issue 7:

getpid
Purpose:

Synopsis:

Derivation:

Issue 7:

getppid
Purpose:

Synopsis:

Derivation:

Issue 7:

Get the process group ID of the calling process.

#i ncl ude <uni std. h>

pid t getpgrp(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get the process ID.

#i ncl ude <uni std. h>

pid t getpid(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get the parent process ID.
#i ncl ude <uni std. h>
pid t getppid(void);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

getpriority, setpriority

Purpose:

XSI Synopsis:

Derivation:

Issue 7:

Get and set the nice value.
#i ncl ude <sys/resource. h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

getpwnam, getpwnam_r

Purpose:

Synopsis:

Derivation:

Search user database for a name.
#i ncl ude <pwd. h>

struct passwd *get pwnan{const char *nane);

i nt getpwnamr(const char *nane, struct passwd *pwd,
char *buffer, size_t bufsize,
struct passwd **result);

First released in Issue 1. Derived from System V Release 2.0.

The Authorized Guide to the Single UNIX Specification, Version 4 61



System Interfaces System Interfaces Migration

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf (_SC_GETPW_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getpwnam_r () function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

getpwuid, getpwuid_r

Purpose: Search user database for a user ID.

Synopsis:  #i ncl ude <pwd. h>

struct passwd *get pwui d(uid_t uid);
int getpwiid r(uid t uid, struct passwd *pwd, char *buffer
size_ t bufsize, struct passwd **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf (_SC_GETPW_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getpwuid_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().
getrlimit, setrlimit
Purpose: Control maximum resource consumption.
XSl Synopsis:  #i ncl ude <sys/resource. h>

int getrlimt(int resource, struct rlimt *rlp);
int setrlimt(int resource, const struct rlimt *rlp);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

getrusage

Purpose: Get information about resource utilization.
XSl Synopsis:  #i ncl ude <sys/resource. h>

i nt getrusage(int who, struct rusage *r_usage);

Derivation: First released in Issue 4, Version 2.

62 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.
gets
Purpose: Get a string from a stdin stream.

OB Synopsis:  #i ncl ude <stdi o. h>

char *gets(char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

The gets() function is marked obsolescent. Applications should use the fgets()
function instead.

Changes are made related to support for finegrained timestamps.

getsid
Purpose: Get the process group ID of a session leader.
Synopsis:  #i ncl ude <uni std. h>

pidt getsid(pid t pid);

Derivation: First released in Issue 4, Version 2.

Issue 7: The getsid () function is moved from the XSI option to the Base.
getsockname
Purpose: Get the socket name.

Synopsis:  #i ncl ude <sys/socket. h>

i nt getsocknanme(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_|en);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5

(XCU5).
Issue 7: No functional changes are made in this issue.
getsockopt
Purpose: Get the socket options.

Synopsis:  #i ncl ude <sys/socket. h>

i nt getsockopt(int socket, int |evel
int option_name, void *restrict option_val ue,
socklen_t *restrict option_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to
socket options that is now in XSH Section 2.10.16 .

The Authorized Guide to the Single UNIX Specification, Version 4 63



System Interfaces

OB XSI

64

System Interfaces Migration

getsubopt
Purpose: Parse suboption arguments from a string.
Synopsis:  #i ncl ude <stdlib. h>
i nt getsubopt(char **optionp, char * const *keylistp,
char **val uep);
Derivation: First released in Issue 4, Version 2.
Issue 7: The getsubopt () function is moved from the XSI option to the Base.
gettimeofday
Purpose: Get the date and time.
Synopsis:  #i ncl ude <sys/tinme. h>
int gettimeofday(struct timeval *restrict tp,
void *restrict tzp);
Derivation: First released in Issue 4, Version 2.
Issue 7: The gettimeofday() function is marked obsolescent. Applications should use the
clock_gettime() function instead.
getuid
Purpose: Get a real user ID.
Synopsis:  #i ncl ude <uni std. h>
uid t getuid(void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
getwc
Purpose: Get a wide character from a stream.
Synopsis:  #i ncl ude <stdio. h>
#i ncl ude <wchar. h>
wint t getwc(FILE *strean);
Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the
MSE working draft.
Issue 7: No functional changes are made in this issue.
getwchar
Purpose: Get a wide character from a stdin stream.
Synopsis:  #i ncl ude <wchar. h>
wi nt _t getwchar(void);
Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the

MSE working draft.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.
glob, globfree
Purpose: Generate pathnames matching a pattern.

Synopsis:  #i ncl ude <gl ob. h>

int glob(const char *restrict pattern, int flags,
int(*errfunc)(const char *epath, int eerrno),
glob_t *restrict pglob);

voi d gl obfree(glob_t *pglob);

Derivation: First released in Issue 4. Derived from the .

Issue 7: No functional changes are made in this issue.

gmtime, gmtime_r
Purpose: Convert a time value to a broken-down UTC time.
Synopsis:  #i ncl ude <tine. h>

struct tm*gntinme(const tinme_t *tiner);
o4 struct tm*gntinme_r(const tine t *restrict tinmer
struct tm*restrict result);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The gmtime_r() function is moved from the Thread-Safe Functions option to the
Base.
grantpt
Purpose: Grant access to the slave pseudo-terminal device.
XSl Synopsis:  #i ncl ude <stdlib. h>

int grantpt(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

hcreate, hdestroy, hsearch
Purpose: Manage hash search table.
XSl Synopsis:  #i ncl ude <sear ch. h>

int hcreate(size_ t nel);
voi d hdest roy(void);
ENTRY *hsear ch( ENTRY item ACTI ON acti on);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 65



System Interfaces

System Interfaces Migration

htonl, htons, ntohl, ntohs

Purpose: Convert values between host and network byte order.
Synopsis: ~ #i ncl ude <arpa/inet. h>
uint32_t htonl (uint32_t hostlong);
uintl6 t htons(uintl6_t hostshort);
uint32_ t ntohl (uint32_t netlong);
uintl6 t ntohs(uintl6_t netshort);
Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).
Issue 7: No functional changes are made in this issue.
hypot, hypotf, hypotl
Purpose: Euclidean distance function.
Synopsis:  #i ncl ude <math. h>
doubl e hypot (doubl e x, double y);
float hypotf(float x, float y);
| ong doubl e hypotl (1 ong doubl e x, |ong double y);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
iconv
Purpose: Codeset conversion function.
Synopsis:  #i ncl ude <iconv. h>
size_ t iconv(iconv_t cd, char **restrict inbuf,
size t *restrict inbytesleft, char **restrict outbuf,
size t *restrict outbytesleft);
Derivation: First released in Issue 4. Derived from the HP-UX Manual.
Issue 7: The iconv() function is moved from the XSI option to the Base.

iconv_close
Purpose:

Synopsis:

Derivation:

Issue 7:

66

Codeset conversion deallocation function.

#i ncl ude <iconv. h>

int iconv_close(iconv_t cd);

First released in Issue 4. Derived from the HP-UX Manual.

The iconv_close() function is moved from the XSI option to the Base.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

iconv_open
Purpose: Codeset conversion allocation function.
Synopsis:  #i ncl ude <iconv. h>
i conv_t iconv_open(const char *tocode, const char *frontode);
Derivation: First released in Issue 4. Derived from the HP-UX Manual.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The iconv_open () function is moved from the XSI option to the Base.

if freenameindex
Purpose: Free memory allocated by if_nameindex.
Synopsis:  #i ncl ude <net/if.h>
void if_freenanei ndex(struct if_namei ndex *ptr);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: No functional changes are made in this issue.

if _indextoname
Purpose: Map a network interface index to its corresponding name.
Synopsis:  #i ncl ude <net/if.h>
char *if _indextonanme(unsigned ifindex, char *ifnane);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: No functional changes are made in this issue.

if nameindex
Purpose: Return all network interface names and indexes.
Synopsis:  #i ncl ude <net/if.h>

struct if_naneindex *if_nanei ndex(void);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb).

Issue 7: No functional changes are made in this issue.

if nametoindex
Purpose: Map a network interface name to its corresponding index.
Synopsis:  #i ncl ude <net/if.h>

unsi gned i f_nanet oi ndex(const char *ifnane);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

The Authorized Guide to the Single UNIX Specification, Version 4 67



System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.
ilogb, ilogbf, ilogbl
Purpose: Return an unbiased exponent.

Synopsis:  #i ncl ude <math. h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double Xx);

Derivation: First released in Issue 4, Version 2.

Issue 7: ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #48 (SD5-XSH-ERN-71),
#49, and #79 (SD5-XSH-ERN-72) are applied.

imaxabs

Purpose: Return absolute value.

Synopsis:  #i ncl ude <inttypes. h>
intmax_t inaxabs(intmax_t j);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
imaxdiv
Purpose: Return quotient and remainder.

Synopsis:  #i ncl ude <inttypes. h>
i maxdiv_t inmaxdiv(intmax_t numer, intmax_t denon);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

inet_addr, inet_ntoa
Purpose: IPv4 address manipulation.
Synopsis:  #i ncl ude <arpa/inet. h>

i n_addr_t inet_addr(const char *cp);
char *inet _ntoa(struct in_addr in);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: No functional changes are made in this issue.

68 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

inet_ntop, inet_pton
Purpose: Convert IPv4 and IPv6 addresses between binary and text form.
Synopsis: ~ #i ncl ude <arpa/inet. h>

const char *inet_ntop(int af, const void *restrict src,
char *restrict dst, socklen_t size);

int inet_pton(int af, const char *restrict src,
void *restrict dst);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: No functional changes are made in this issue.

initstate, random, setstate, srandom
Purpose: Pseudo-random number functions.
XSl Synopsis:  #i ncl ude <stdlib. h>

char *initstate(unsigned seed, char *state, size t size);
| ong randon{voi d);

char *setstate(char *state);

voi d srandon{unsi gned seed);

Derivation: First released in Issue 4, Version 2.

Issue 7: The type of the first argument to setstate() is changed from const char * to char *.

insque, remque
Purpose: Insert or remove an element in a queue.
XSl Synopsis:  #i ncl ude <sear ch. h>

voi d i nsque(void *el enent, void *pred);
voi d rengue(voi d *el enent);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

ioctl
Purpose: Control a STREAMS device (STREAMS).
OB XsR Synopsis:  #i ncl ude <stropts. h>

int ioctl(int fildes, int request, ... /* arg */);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #155 is applied, adding a “may fail”
[EINVAL] error condition for the I_SENDFD command.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

The ioctl() function is marked obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4 69



System Interfaces System Interfaces Migration

isalnum, isalnum_1
Purpose: Test for an alphanumeric character.
Synopsis:  #i ncl ude <ctype. h>

int isalnun(int c);
o4 int isalnuml(int c, locale t l|ocale);

The isalnum_I() function tests whether c is a character of class alpha or digit in the
locale represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isalnum_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isalpha, isalpha_l

Purpose: Test for an alphabetic character.

Synopsis:  #i ncl ude <ctype. h>

int isalpha(int c);
o4 int isalpha_l(int c, locale_t |ocale);

The isalpha_I() function tests whether c is a character of class alpha in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()

or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isalpha_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isascii

Purpose: Test for a 7-bit US-ASCII character.
oB xsI  Synopsis:  #i ncl ude <ctype. h>

int isascii(int c);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The isascii() function is marked obsolescent.

isastream
Purpose: Test a file descriptor (STREAMS).
OB XsR Synopsis:  #i ncl ude <stropts. h>

int isastrean(int fildes);

Derivation: First released in Issue 4, Version 2.

70 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

isatty
Purpose:

Synopsis:

Derivation:

Issue 7:

The isastream () function is marked obsolescent.

Test for a terminal device.

#i ncl ude <uni std. h>

int isatty(int fildes);

First released in Issue 1. Derived from Issue 1 of the SVID.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

isblank, isblank_1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a blank character.
#i ncl ude <ctype. h>

int isblank(int c);
int isblank | (int c, locale t I|ocale);

The isblank_I() function tests whether ¢ is a character of class blank in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

The isblank_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iscntrl, iscntrl_1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a control character.
#i ncl ude <ctype. h>

int iscntrl(int c);
int iscntrl |I(int c, locale t l|ocale);

The iscntrl_I() function tests whether c is a character of class cntrl in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The iscntrl_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The Authorized Guide to the Single UNIX Specification, Version 4 71



System Interfaces System Interfaces Migration

isdigit, isdigit_lI
Purpose: Test for a decimal digit.
Synopsis:  #i ncl ude <ctype. h>

int isdigit(int c);
o4 int isdigit I(int c, locale t locale);

The isdigit_I() function tests whether c is a character of class digit in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()

or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isdigit_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isfinite

Purpose: Test for finite value.

Synopsis:  #i ncl ude <math. h>
int isfinite(real-floating x);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isgraph, isgraph_1
Purpose: Test for a visible character.
Synopsis:  #i ncl ude <ctype. h>

int isgraph(int c);
o4 int isgraph_I(int c, locale_t |ocale);

The isgraph_I() function tests whether c is a character of class graph in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()

or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isgraph_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isgreater

Purpose: Test if x greater than y.

Synopsis:  #i ncl ude <math. h>
int isgreater(real-floating x, real-floating y);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

72 A Source Book from The Open Group (2010)



System Interfaces Migration

System Interfaces

isgreaterequal
Purpose: Test if x is greater than or equal to .
Synopsis:  #i ncl ude <math. h>

int isgreaterequal (real-floating x, real-floating y);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.
isinf
Purpose: Test for infinity.
Synopsis:  #i ncl ude <math. h>

int isinf(real-floating x);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.
isless
Purpose: Test if x is less than y.
Synopsis:  #i ncl ude <math. h>

int isless(real-floating x, real-floating y);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.
islessequal
Purpose: Test if x is less than or equal to y.
Synopsis:  #i ncl ude <math. h>

int islessequal (real-floating x, real-floating y);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.
islessgreater
Purpose: Test if x is less than or greater than y.
Synopsis:  #i ncl ude <math. h>

int islessgreater(real-floating x, real-floating y);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.

The Authorized Guide to

the Single UNIX Specification, Version 4 73



System Interfaces

CX

CX

74

System Interfaces Migration

islower, islower_1

Purpose:

Synopsis:

Derivation:

Issue 7:

isnan
Purpose:

Synopsis:

Derivation:

Issue 7:

isnormal
Purpose:

Synopsis:

Derivation:

Issue 7:

Test for a lowercase letter.
#i ncl ude <ctype. h>

int islower(int c);
int islower |(int c, locale t I|ocale);

The islower_I() function tests whether c is a character of class lower in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The islower_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Test for a NaN.

#i ncl ude <mat h. h>

int isnan(real-floating x);
First released in Issue 3.

No functional changes are made in this issue.

Test for a normal value.

#i ncl ude <mat h. h>

int isnormal (real -floating x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

isprint, isprint_l

Purpose:

Synopsis:

Derivation:

Issue 7:

Test for a printable character.
#i ncl ude <ctype. h>

int isprint(int c);
int isprint_I(int c, locale_t |ocale);

The isprint_I() function tests whether ¢ is a character of class print in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The isprint_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

CX

CX

CX

ispunct, ispunct_l

Purpose:

Synopsis:

Derivation:

Issue 7:

Test for a punctuation character.
#i ncl ude <ctype. h>

int ispunct(int c);
int ispunct_I(int c, locale_t |ocale);

The ispunct_I() function tests whether c is a character of class punct in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The ispunct_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isspace, isspace_l

Purpose:

Synopsis:

Derivation:

Issue 7:

isunordered

Purpose:

Synopsis:

Derivation:

Issue 7:

Test for a white-space character.
#i ncl ude <ctype. h>

int isspace(int c);
int isspace_|I(int c, locale_t |ocale);

The isspace_l() function tests whether c is a character of class space in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The isspace_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Test if arguments are unordered.

#i ncl ude <mat h. h>

int isunordered(real-floating x, real-floating y);
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

isupper, isupper._l

Purpose:

Synopsis:

Test for an uppercase letter.
#i ncl ude <ctype. h>

int isupper(int c);
int isupper_I(int ¢, locale_t |ocale);

The isupper_I() function tests whether c is a character of class upper in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

The Authorized Guide to the Single UNIX Specification, Version 4 75



System Interfaces

Derivation:

Issue 7:

System Interfaces Migration

First released in Issue 1. Derived from Issue 1 of the SVID.

The isupper_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswalnum, iswalnum_1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for an alphanumeric wide-character code.
#i ncl ude <wctype. h>

int iswal num(wint t wc);
int iswal numl(wint t we, locale t I|ocale);

The iswalnum_I() function tests whether wc is a wide-character code representing a
character of class alpha or digit in the locale represented by locale. A handle for
use as locale can be obtained using newlocale() or duplocale().

First released as a World-wide Portability Interface in Issue 4.

The iswalnum_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswalpha, iswalpha _l

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for an alphabetic wide-character code.
#i ncl ude <wctype. h>

int iswal pha(wint_t wc);
int iswal pha_l (wint_t we, locale_t |ocale);

The iswalpha_I() function tests whether wc is a wide-character code representing a
character of class alpha in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

First released in Issue 4.

The iswalpha_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswblank, iswblank _1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

76

Test for a blank wide-character code.
#i ncl ude <wctype. h>

int iswblank(wint t wc);
int iswblank | (wint t we, locale t I|ocale);

The iswblank_I () function tests whether wc is a wide-character code representing a
character of class blank in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

The iswblank_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

iswentrl, iswentrl_1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a control wide-character code.
#i ncl ude <wctype. h>

int iswentrl(wint_t we);
int iswentrl I (wint t we, locale t I|ocale);

The iswentrl_I() function tests whether wc is a wide-character code representing a
character of class cntrl in the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

First released in Issue 4.

The iswentrl_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswctype, iswctype_l

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test character for a specified class.
#i ncl ude <wctype. h>

int iswtype(wint t wc, wetype_ t charcl ass);
int iswctype | (wint_t we, wetype_ t charcl ass,
|l ocale t locale);

The iswctype_I() function determines whether the wide-character code wc has the
character class charclass in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

First released as World-wide Portability Interfaces in Issue 4.

The iswctype_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswdigit, iswdigit_1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a decimal digit wide-character code.
#i ncl ude <wctype. h>

int iswdigit(wint_t wc);
int iswdigit I(wint t w, locale t l|ocale);

The iswdigit_I() function tests whether wc is a wide-character code representing a
character of class digit in the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

First released in Issue 4.

The iswdigit_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The Authorized Guide to the Single UNIX Specification, Version 4 77



System Interfaces System Interfaces Migration

iswgraph, iswgraph_1
Purpose: Test for a visible wide-character code.
Synopsis:  #i ncl ude <wctype. h>

int iswgraph(wint_t wc);
o4 int iswgraph_|I(wint_t we, locale_t |ocale);

The iswgraph_I() function tests whether wc is a wide-character code representing a
character of class graph in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswgraph_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswlower, iswlower_1

Purpose: Test for a lowercase letter wide-character code.

Synopsis:  #i ncl ude <wctype. h>

int iswower(wint t we);
o4 int iswower | (wint t we, locale t I|ocale);

The iswlower_I() function tests whether wc is a wide-character code representing a
character of class lower in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswlower_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswprint, iswprint_1

Purpose: Test for a printable wide-character code.

Synopsis:  #i ncl ude <wctype. h>

int iswprint(wint_t we);
o4 int iswprint_I(wint_t we, locale_t |ocale);

The iswprint_I() function tests whether wc is a wide-character code representing a
character of class print in the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswprint_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

78 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

iswpunct, iswpunct_1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a punctuation wide-character code.
#i ncl ude <wctype. h>

int iswpunct(wint t wc);
int iswpunct | (wint_t we, locale_t |ocale);

The iswpunct_I() function tests whether wc is a wide-character code representing a
character of class punct in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

First released in Issue 4.

The iswpunct_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswspace, iswspace_l

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a white-space wide-character code.
#i ncl ude <wctype. h>

int iswspace(wint t wc);
int iswspace_ | (wint_t we, locale_t |ocale);

The iswspace_I() function tests whether wc is a wide-character code representing a
character of class space in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

First released in Issue 4.

The iswspace_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswupper, iswupper_l

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for an uppercase letter wide-character code.
#i ncl ude <wctype. h>

int iswipper(wint_t wc);
int iswupper_I(wint_t we, locale_t |ocale);

The iswupper_I() function tests whether wc is a wide-character code representing a
character of class upper in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

First released in Issue 4.

The iswupper_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

The Authorized Guide to the Single UNIX Specification, Version 4 79



System Interfaces System Interfaces Migration

iswxdigit, iswxdigit_l
Purpose: Test for a hexadecimal digit wide-character code.
Synopsis:  #i ncl ude <wctype. h>

int iswxdigit(wint_t we);
o4 int iswdigit I(wint t w, locale t |ocale);

The iswxdigit_I() function tests whether wc is a wide-character code representing a
character of class xdigit in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswxdigit_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

isxdigit, isxdigit_l

Purpose: Test for a hexadecimal digit.

Synopsis:  #i ncl ude <ctype. h>

int isxdigit(int c);
&% int isxdigit I(int ¢, locale_ t |ocale);

The isxdigit_I() function tests whether c is a character of class xdigit in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()

or duplocale().
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The isxdigit_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.
jo,j1, jn
Purpose: Bessel functions of the first kind.
XSl Synopsis:  #i ncl ude <mat h. h>

doubl e j O(doubl e Xx);
doubl e j 1(doubl e Xx);
doubl e jn(int n, double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

80 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

kill
Purpose:

Cx Synopsis:

Derivation:

Issue 7:

killpg
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

labs, llabs
Purpose:

Synopsis:

Derivation:

Issue 7:

Ichown
Purpose:

Synopsis:

Derivation:

Issue 7:

Send a signal to a process or a group of processes.
#i ncl ude <si gnal . h>

int kill(pid_t pid, int sig);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Send a signal to a process group.

#i ncl ude <si gnal . h>

int killpg(pid_t pgrp, int sig);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Return a long integer absolute value.
#i nclude <stdlib. h>

I ong labs(long i);
long long Ilabs(long long i);

First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

No functional changes are made in this issue.

Change the owner and group of a symbolic link.

#i ncl ude <uni std. h>

int Ichown(const char *path, uid t owner, gid t group);
First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The Ichown () function is moved from the XSI option to the Base.
The [EOPNOTSUPP] error is removed.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

The Authorized Guide to the Single UNIX Specification, Version 4 81



System Interfaces System Interfaces Migration

1dexp, 1dexpf, 1dexpl
Purpose: Load exponent of a floating-point number.
Synopsis:  #i ncl ude <math. h>

doubl e | dexp(doubl e x, int exp);
float |dexpf(float x, int exp);
| ong doubl e | dexpl (1 ong double x, int exp);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
1div, 11div
Purpose: Compute quotient and remainder of a long division.

Synopsis: ~ #i ncl ude <stdlib. h>

Idiv_t Idiv(long nuner, |ong denom;
Il1div_t Ildiv(long long nunmer, long | ong denom

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

Igamma, lgammaf, Igammal, signgam
Purpose: Log gamma function.
Synopsis:  #i ncl ude <math. h>

doubl e | gamma(doubl e x);

float | gammaf(float x);

| ong doubl e | ganmal (|1 ong doubl e x);
XSI extern int signgam

Derivation: First released in Issue 3.

Issue 7: The DESCRIPTION is clarified regarding the value of signgam when x is Nan, —Inf,
or a negative integer.

link, linkat

Purpose: Link one file to another file relative to two directory file descriptors.

Synopsis: ~ #i ncl ude <uni std. h>

int link(const char *pathl, const char *path2);
int linkat(int fdl, const char *pathl, int fd2,
const char *path2, int flag);

The linkat() function is equivalent to the link() function except in the case where
either pathl or path2 or both are relative paths. In this case a relative path pathl is
interpreted relative to the directory associated with the file descriptor fdl instead
of the current working directory and similarly for path2 and the file descriptor fd2.
If the file descriptor was opened without O_SEARCH, the function checks whether
directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH,
the function does not perform the check.

82 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

lio_listio
Purpose:

Synopsis:

Derivation:

Issue 7:

listen
Purpose:

Synopsis:

Derivation:

Issue 7:

The AT_SYMLINK_FOLLOW flag can be used to specify that if pathl names a
symbolic link, a new link for the target of the symbolic link is created. By default a
new link for the symbolic link itself is created.

The purpose of the linkat() function is to link files in directories other than the
current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to link(), resulting in unspecified
behavior. By opening a file descriptor for the directory of both the existing file and
the target location and using the linkat() function it can be guaranteed that the
both filenames are in the desired directories.

First released in Issue 1. Derived from Issue 1 of the SVID.

If pathl names a symbolic link, the link() function is no longer required to follow
the link: it is implementation-defined whether link() follows the link, or creates a
new link to the symbolic link itself. Applications which need control over whether
the link is followed can use the new linkat() function, setting the flag argument
appropriately.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The linkat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Functionality relating to XSI STREAMS is marked obsolescent.

Changes are made related to support for finegrained timestamps.

List directed I/0.
#i ncl ude <ai o. h>

int lio_ listio(int node,
struct aiocb *restrict const list[restrict],
int nent, struct sigevent *restrict sig);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The lio_listio() function is moved from the Asynchronous Input and Output option
to the Base.

Listen for socket connections and limit the queue of incoming connections.
#i ncl ude <sys/socket. h>
int listen(int socket, int backlog);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 83



System Interfaces

System Interfaces Migration

1lrint, llrintf, llrintl

Purpose:

Synopsis:

Derivation:

Issue 7:

Round to the nearest integer value using current rounding direction.
#i ncl ude <math. h>

long long Ilrint(double x);
long long Ilrintf(float x);
long long Ilrintl(long double x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 is applied.

1lIround, llroundf, llroundl

Purpose:

Synopsis:

Derivation:

Issue 7:

localeconv
Purpose:

Synopsis:

Derivation:

Issue 7:

Round to nearest integer value.
#i ncl ude <math. h>

I ong long Ilround(double x);
long long Ilroundf(float x);
long long Ilroundl (I ong double Xx);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-75) is
applied.

Return locale-specific information.

#incl ude <l ocal e. h>

struct I conv *|ocal econv(void);

First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

The definitions of int_curr_symbol and currency_symbol are updated.

The examples in the APPLICATION USAGE section are updated.

localtime, localtime_r

Purpose:
Synopsis:
cx
Derivation:
Issue 7:
84

Convert a time value to a broken-down local time.
#i ncl ude <tine. h>

struct tm*localtinme(const time_t *tinmer);
struct tm*localtinme_r(const tinme t *restrict tiner
struct tm*restrict result);

First released in Issue 1. Derived from Issue 1 of the SVID.

The localtime_r() function is moved from the Thread-Safe Functions option to the
Base.

Changes are made to the EXAMPLES section related to support for finegrained
timestamps.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

X8I

lockf
Purpose: Record locking on files.
Synopsis:  #i ncl ude <uni std. h>
int lockf(int fildes, int function, off t size);
Derivation: First released in Issue 4, Version 2.
Issue 7: Austin Group Interpretation 1003.1-2001 #054 is applied, updating the
DESCRIPTION to change “other threads” to “threads in other processes”.
log, logf, logl
Purpose: Natural logarithm function.
Synopsis:  #i ncl ude <math. h>
doubl e | og(doubl e x);
float |ogf(float Xx);
| ong doubl e | ogl (I ong doubl e x);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
log10, log10f, log101
Purpose: Base 10 logarithm function.
Synopsis:  #i ncl ude <math. h>
doubl e 1 0g1l0(doubl e x);
float |o0glO0f(float x);
| ong doubl e | 0gl0l (1 ong doubl e x);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
loglp, loglpf, loglpl
Purpose: Compute a natural logarithm.
Synopsis:  #i ncl ude <math. h>
doubl e | oglp(double x);
float |oglpf(float Xx);
| ong doubl e | oglpl (1 ong double x);
Derivation: First released in Issue 4, Version 2.
Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 85



System Interfaces

86

System Interfaces Migration

log2, log2f, log2l
Purpose: Compute base 2 logarithm functions.
Synopsis:  #i ncl ude <math. h>
doubl e | og2(doubl e x);
float |og2f(float x);
| ong doubl e | 0g2l (I ong doubl e x);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: No functional changes are made in this issue.
logb, logbf, logbl
Purpose: Radix-independent exponent.
Synopsis:  #i ncl ude <math. h>
doubl e | ogb(doubl e x);
float |ogbf(float x);
| ong doubl e | ogbl (I ong doubl e x);
Derivation: First released in Issue 4, Version 2.
Issue 7: ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #50 (SD5-XSH-ERN-76) is
applied.
longjmp
Purpose: Non-local goto.
Synopsis:  #i ncl ude <setjnp. h>
voi d | ongj np(j np_buf env, int val);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.

Irint, Irintf, Irintl

Purpose:

Synopsis:

Derivation:

Issue 7:

Round to nearest integer value using current rounding direction.
#i ncl ude <math. h>

long Irint(double x);
long Irintf(float x);
long Irintl(long double x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #53 (SD5-XSH-ERN-77) is
applied.

A Source Book from The Open Group (2010)



System Interfaces Migration

X8I

The Authorized Guide to the Single UNIX Specification, Version 4

System Interfaces

lround, lroundf, Iroundl

Purpose:

Synopsis:

Derivation:

Issue 7:

Isearch, Ifind
Purpose:

Synopsis:

Derivation:

Issue 7:

Iseek
Purpose:

Synopsis:

Derivation:

Issue 7:

malloc
Purpose:

Synopsis:

Derivation:

Issue 7:

Round to nearest integer value.
#i ncl ude <math. h>

| ong | round(doubl e x);
I ong | roundf (float x);
I ong I roundl (I ong double x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-78) is
applied.

Linear search and update.
#i ncl ude <search. h>

voi d *| search(const void *key, void *base, size_t *nelp,
size_t width, int (*conpar)(const void *, const void *));

void *Ifind(const void *key, const void *base, size_t *nelp,
size_t width, int (*conpar)(const void *, const void *));

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Move the read /write file offset.

#i ncl ude <uni std. h>

off t Iseek(int fildes, off _t offset, int whence);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

A memory allocator.

#i ncl ude <stdlib. h>

void *nal l oc(size_ t size);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

87



System Interfaces System Interfaces Migration

CX

88

mblen
Purpose: Get number of bytes in a character.
Synopsis:  #i ncl ude <stdlib. h>
i nt nblen(const char *s, size_t n);
Derivation: First released in Issue 4. Aligned with the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.
mbrlen
Purpose: Get number of bytes in a character (restartable).

Synopsis:  #i ncl ude <wchar. h>

size_ t nbrlen(const char *restrict s, size t n
nbstate t *restrict ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

mbrtowc

Purpose: Convert a character to a wide-character code (restartable).

Synopsis:  #i ncl ude <wchar. h>

size t nbrtowc(wchar t *restrict pwc, const char *restrict s,
size t n, nbstate t *restrict ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

mbsinit

Purpose: Determine conversion object status.

Synopsis:  #i ncl ude <wchar. h>
int nbsinit(const nbstate t *ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

mbsnrtowcs, mbsrtowcs
Purpose: Convert a character string to a wide-character string (restartable).
Synopsis:  #i ncl ude <wchar. h>

size t nbsnrtowcs(wchar t *restrict dst,
const char **restrict src, size t nnt,
size t len, nbstate_t *restrict ps);

size t nbsrtowcs(wchar _t *restrict dst,
const char **restrict src, size t len
nbstate t *restrict ps);

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

mbstowcs
Purpose:

Synopsis:

Derivation:

Issue 7:

mbtowc
Purpose:

Synopsis:

Derivation:

Issue 7:

memccpy
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

The mbsnrtowcs () function is equivalent to the mbsrtowcs () function, except that the
conversion of characters pointed to by src is limited to at most nmc bytes (the size
of the input buffer).

First released in Issue 5. Included for alignment with .

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

The mbsnrtowes() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

Convert a character string to a wide-character string.
#include <stdlib. h>

size_ t nbstowcs(wchar t *restrict pwes, const char *restrict s,
size t n);

First released in Issue 4. Aligned with the IEEE Std 1003.1i-1995.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

Convert a character to a wide-character code.
#i ncl ude <stdlib. h>

int nmbtowc(wchar _t *restrict pwe, const char *restrict s,
size t n);

First released in Issue 4. Aligned with the IEEE Std 1003.1i-1995.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

Copy bytes in memory.
#i ncl ude <string. h>

void *menccpy(void *restrict sl, const void *restrict s2,
int ¢, size t n);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 89



System Interfaces

90

memchr
Purpose:

Synopsis:

Derivation:

Issue 7:

memcmp
Purpose:

Synopsis:

Derivation:

Issue 7:

memcpy
Purpose:

Synopsis:

Derivation:

Issue 7:

memmove
Purpose:

Synopsis:

Derivation:

Issue 7:

memset
Purpose:

Synopsis:

Derivation:

Issue 7:

Find byte in memory.

#i ncl ude <string. h>

void *nenchr(const void *s, int c,
First released in Issue 1. Derived from Issue 1

No functional changes are made in this issue.

Compare bytes in memory.

#i ncl ude <string. h>

System Interfaces Migration

size t n);
of the SVID.

i nt mencnp(const void *sl1, const void *s2, size_t n);

First released in Issue 1. Derived from Issue 1

No functional changes are made in this issue.

Copy bytes in memory.

#i ncl ude <string. h>

of the SVID.

void *nencpy(void *restrict sl1, const void *restrict s2,

size t n);
First released in Issue 1. Derived from Issue 1

No functional changes are made in this issue.

of the SVID.

Copy bytes in memory with overlapping areas.

#i ncl ude <string. h>

voi d *nemove(void *sl, const void *s2, size t n);
First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

No functional changes are made in this issue.

Set bytes in memory.

#i ncl ude <string. h>

void *nenset(void *s, int ¢, size_t n);

First released in Issue 1. Derived from Issue 1

No functional changes are made in this issue.

of the SVID.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

CX

mkdir, mkdirat

Purpose:

Synopsis:

Derivation:

Issue 7:

Make a directory relative to directory file descriptor.
#i ncl ude <sys/stat. h>

i nt nkdir(const char *path, nobde_t node);
int nkdirat(int fd, const char *path, node_t node);

The mkdirat() function is equivalent to the mkdir() function except in the case
where path specifies a relative path. In this case the newly created directory is
created relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the mkdirat() function is to create a directory in directories other
than the current working directory without exposure to race conditions. Any part
of the path of a file could be changed in parallel to the call to mkdir(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and
using the mkdirat() function it can be guaranteed that the newly created directory
is located relative to the desired directory.

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The mkdirat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

mkdtemp, mkstemp

Purpose:

Synopsis:

Derivation:

Issue 7:

Create a unique directory or file.
#include <stdlib. h>

char *nkdtenp(char *tenplate);
i nt nkstenp(char *tenpl ate);

The mkdtemp() function uses the contents of template to construct a unique
directory name. The string provided in template is a filename ending with six
trailing * X' s. The mkdtemp() function replaces each * X' with a character from the
portable filename character set. The characters are chosen such that the resulting
name does not duplicate the name of an existing file at the time of a call to
mkdtemp (). The unique directory name is used to attempt to create the directory
using mode 0700 as modified by the file creation mask.

First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

SD5-XSH-ERN-168 is applied, clarifying file permissions upon creation.

The mkstemp () function is moved from the XSI option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 91



System Interfaces System Interfaces Migration

X8I

92

The mkdtemp () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

mkfifo, mkfifoat
Purpose: Make a FIFO special file relative to directory file descriptor.
Synopsis:  #i ncl ude <sys/stat. h>

int nkfifo(const char *path, node_t node);
int nkfifoat(int fd, const char *path, node_t node);

The mkfifoat() function is equivalent to the mkfifo() function except in the case
where path specifies a relative path. In this case the newly created FIFO is created
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the mkfifoat () function is to create a FIFO special file in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to mkfifo(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and
using the mkfifoat () function it can be guaranteed that the newly created FIFO is
located relative to the desired directory.

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The mkfifoat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

mknod, mknodat
Purpose: Make directory, special file, or regular file.
Synopsis:  #i ncl ude <sys/stat. h>

i nt nmknod(const char *path, nbde_t node, dev_t dev);
i nt nmknodat (i nt fd, const char *path, node_t node, dev_t dev);

The mknodat () function is equivalent to the mknod() function except in the case
where path specifies a relative path. In this case the newly created directory, special
file, or regular file is located relative to the directory associated with the file
descriptor fd instead of the current working directory. If the file descriptor was
opened without O_SEARCH, the function checks whether directory searches are
permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function does
not perform the check.

The purpose of the mknodat() function is to create directories, special files, or
regular files in directories other than the current working directory without
exposure to race conditions. Any part of the path of a file could be changed in

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

MLR

ML

Derivation:

Issue 7:

mktime
Purpose:

Synopsis:

Derivation:

Issue 7:

parallel to a call to mknod(), resulting in unspecified behavior. By opening a file
descriptor for the target directory and using the mknodat() function it can be
guaranteed that the newly created directory, special file, or regular file is located
relative to the desired directory.

First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The mknodat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

Convert broken-down time into time since the Epoch.
#incl ude <tinme. h>
time_t nktinme(struct tm*tineptr);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1) and the IEEE Std 1003.1b-1993.

No functional changes are made in this issue.

mlock, munlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock or unlock a range of process address space (REALTIME).
#i ncl ude <sys/ nman. h>

int mock(const void *addr, size t len);
i nt nmunl ock(const void *addr, size t len);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

mlockall, munlockall

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock/unlock the address space of a process (REALTIME).
#i ncl ude <sys/ nmman. h>

int mockall(int flags);
i nt munl ockal | (voi d) ;

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 93



System Interfaces System Interfaces Migration

mmap
Purpose: Map pages of memory.
Synopsis:  #i ncl ude <sys/ mman. h>

void *nmap(void *addr, size_ t len, int prot, int flags,
int fildes, off _t off);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretations 1003.1-2001 #078 and #079 are applied, clarifying
page alignment requirements and adding a note about the state of synchronization
objects becoming undefined when a shared region is unmapped.

Functionality relating to the Memory Protection and Memory Mapped Files
options is moved to the Base.

Changes are made related to support for finegrained timestamps.

modf, modff, modfl
Purpose: Decompose a floating-point number.
Synopsis:  #i ncl ude <math. h>

doubl e nodf (doubl e x, double *iptr);
float nodff(float value, float *iptr);
| ong doubl e nodfl (I ong doubl e value, |1ong double *iptr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
mprotect
Purpose: Set protection of memory mapping.

Synopsis:  #i ncl ude <sys/ mman. h>
int nprotect(void *addr, size t len, int prot);
Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The mprotect () function is moved from the Memory Protection option to the Base.

mgq_close
Purpose: Close a message queue (REALTIME).

MSG Synopsis:  #i ncl ude <ngueue. h>
int nmy_close(ngd_t nmdes);
Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

Issue 7: No functional changes are made in this issue.

94 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

MSG

MSG

MSG

mq_getattr
Purpose:

Synopsis:

Derivation:

Issue 7:

mgq_notify
Purpose:

Synopsis:

Derivation:

Issue 7:

mq_open
Purpose:

Synopsis:

Derivation:

Issue 7:

Get message queue attributes (REALTIME).
#i ncl ude <ngueue. h>

int ng_getattr(ngd_t ngdes, struct ng_attr *ngstat);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

Notify process that a message is available (REALTIME).

#i ncl ude <ngueue. h>

int nmg_notify(md_t ngdes,
const struct sigevent *notification);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XSH-ERN-38 is applied, adding the mgq_timedreceive() function to the
DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #032 is applied, adding the [EINVAL]
error.

An example is added.

Open a message queue (REALTIME).
#i ncl ude <ngueue. h>

ngd_t ng_open(const char *nane, int oflag, ...);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and changing [ENAMETOOLONG] from a “shall fail” to a “may fail”
error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the message queue.

The Authorized Guide to the Single UNIX Specification, Version 4 95



System Interfaces System Interfaces Migration

mgq_receive, mq_timedreceive
Purpose: Receive a message from a message queue (REALTIME).
MSG Synopsis:  #i ncl ude <ngueue. h>

ssize_t ng_receive(ngd_t ngdes, char *nsg_ptr, size_t nsg_| en,
unsi gned *nmsg_pri o) ;

#i ncl ude <ngueue. h>
#i ncl ude <ti nme. h>

ssize_t ng_tinmedreceive(ngd_t nmdes, char *restrict nsg_ptr,
size_t msg_len, unsigned *restrict nmsg_prio,
const struct timespec *restrict abstine);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The mq_timedreceive() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

mgq_send, mq_timedsend
Purpose: Send a message to a message queue (REALTIME).
MSG Synopsis:  #i ncl ude <ngueue. h>

int ng_send(ngd_t ngdes, const char *nsg_ptr, size_t nsg_|en,
unsi gned nsg_pri o) ;

#i ncl ude <ngueue. h>
#i ncl ude <ti me. h>

int ng_tinmedsend(ngd_t ngdes, const char *nsg_ptr,
size_t nsg_l en, unsigned nsg_pri o,
const struct tinmespec *abstine);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The mgq_timedsend () function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

mgq_setattr
Purpose: Set message queue attributes (REALTIME).
MSG Synopsis:  #i ncl ude <ngueue. h>

int ng_setattr(ngd_t nmdes,
const struct ng_attr *restrict nystat,
struct ng_attr *restrict ongstat);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

96 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

mq_unlink
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

msgctl
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

msgget
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

msgrcv
Purpose:

XSI Synopsis:

Derivation:

No functional changes are made in this issue.

Remove a message queue (REALTIME).
#i ncl ude <ngueue. h>

int nmg_unlink(const char *nane);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin  Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a “shall fail” to a “may fail” error .

Austin Group Interpretation 1003.1-2001 #141 is applied, requiring that after a
successful call to mg_unlink(), reuse of the name shall subsequently cause
mq_open() to behave as if no message queue of that name exists (that is, mq_open()
will fail if O_CREAT is not set, or will create a new message queue if O_CREAT is
set). Previously, attempts to recreate the message queue were allowed to fail.

XSI message control operations.
#i ncl ude <sys/ nsg. h>

int megctl (int nsqgid, int cnd, struct nsqi d_ds *buf);

First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

Get the XSI message queue identifier.
#i ncl ude <sys/ nsg. h>

i nt nsgget (key_ t key, int nsgflg);

First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

XSI message receive operation.
#i ncl ude <sys/ nsg. h>

ssize_t megrcv(int nsqid, void *nsgp, size_t nsgsz,
long msgtyp, int nsgflg);

First released in Issue 2. Derived from Issue 2 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4 97



System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.
msgsnd
Purpose: XSI message send operation.

XSl Synopsis:  #i ncl ude <sys/msg. h>

int megsnd(int nsqid, const void *nsgp, Size_t nsgsz,
int nsgflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.
msync
Purpose: Synchronize memory with physical storage.

xslislo  Synopsis:  #i ncl ude <sys/nman. h>

int nmeync(void *addr, size t len, int flags);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The msync() function is marked as part of the Synchronized Input and Output
option or XSI option as the Memory Mapped Files is moved to the Base.

Changes are made related to support for finegrained timestamps.

munmap
Purpose: Unmap pages of memory.
Synopsis:  #i ncl ude <sys/ mman. h>

i nt nmunmap(void *addr, size t len);
Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The munmap() function is moved from the Memory Mapped Files option to the
Base.

nan, nanf, nanl

Purpose: Return quiet NaN.

Synopsis:  #i ncl ude <math. h>

doubl e nan(const char *tagp);
float nanf(const char *tagp);
| ong doubl e nanl (const char *tagp);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

98 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

nanosleep
Purpose:

Cx Synopsis:

Derivation:

Issue 7:

No functional changes are made in this issue.

High resolution sleep.
#i ncl ude <tine. h>

i nt nanosl eep(const struct tinmespec *rqtp,
struct timespec *rntp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XBD-ERN-33 is applied, clarifying that the rqfp and rmtp arguments may
point to the same object.

The nanosleep () function is moved from the Timers option to the Base.

nearbyint, nearbyintf, nearbyintl

Purpose:

Synopsis:

Derivation:

Issue 7:

newlocale
Purpose:

cx Synopsis:

Floating-point rounding functions.
#i ncl ude <math. h>

doubl e near byi nt (doubl e x);
float nearbyintf(float x);
| ong doubl e nearbyintl (I ong doubl e x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Create or modify a locale object.
#incl ude <l ocal e. h>

|l ocal e t new ocal e(int category nmask, const char *I| ocal e,
| ocal e _t base);

The newlocale() function creates a new locale object or modifies an existing one.

Application writers should note that handles for locale objects created by the
newlocale() function should be released by a corresponding call to freelocale().
Also, the special locale object LC_GLOBAL_LOCALE must not be passed for the
base argument, even when returned by the uselocale() function.

The following example shows the construction of a locale where the LC_CTYPE
category data comes from a locale locl, and the LC_TIME category data from a
locale tok2:

#i ncl ude <l ocal e. h>

|l ocale t loc, new.loc;
/* Get the "locl" data. */

loc = new ocale (LC CTYPE MASK, "locl", NULL);
if (loc == (locale_t) 0)

The Authorized Guide to the Single UNIX Specification, Version 4 99



System Interfaces

Derivation:

Issue 7:

System Interfaces Migration

abort ();
/* Get the "loc2" data. */

new | oc = newl ocale (LC TIME _MASK, "loc2", loc);
if (newloc != (locale t) 0)
/* W don 't abort if this fails. In this case this
sinmply used to unchanged | ocal e object. */
|l oc = new | oc;

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

First released in Issue 7.

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl

Purpose:

Synopsis:

Derivation:

Issue 7:

nftw
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

100

Next representable floating-point number.
#i ncl ude <math. h>

doubl e nextafter(double x, double y);

float nextafterf(float x, float y);

| ong doubl e nextafterl (Il ong double x, |ong double y);
doubl e nexttoward(doubl e x, |ong double y);

float nexttowardf(float x, |ong double y);

| ong doubl e nexttowardl (I ong doubl e x, |ong double y);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Walk a file tree.
#i ncl ude <ftw h>

int nftw(const char *path, int (*fn)(const char *,
const struct stat *, int, struct FTW*), int fd limt,
int flags);

First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

APPLICATION USAGE is added and the EXAMPLES section is replaced with a
new example.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

X8I

OH

nice
Purpose: Change the nice value of a process.
Synopsis:  #i ncl ude <uni std. h>

int nice(int incr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

nl_langinfo, nl_langinfo_1
Purpose: Language information.
Synopsis:  #i ncl ude <| angi nfo. h>

char *nl _langinfo(nl _itemitem;
char *nl _langinfo I(nl _itemitem locale t |ocale);

Derivation: First released in Issue 2.
Issue 7: The nl_langinfo() function is moved from the XSI option to the Base.

The nl_langinfo_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

open, openat
Purpose: Open file relative to directory file descriptor.

Synopsis:  #i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

i nt open(const char *path, int oflag, ...);
int openat(int fd, const char *path, int oflag, ...);

The openat () function is equivalent to the open() function except in the case where
path specifies a relative path. In this case the file to be opened is determined
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the openat() function is to enable opening files in directories other
than the current working directory without exposure to race conditions. Any part
of the path of a file could be changed in parallel to a call to open(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and
using the openat() function it can be guaranteed that the opened file is located
relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #113 is applied, requiring the O_SYNC
flag to be supported for regular files, even if the Synchronized Input and Output
option is not supported.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The Authorized Guide to the Single UNIX Specification, Version 4 101



System Interfaces

CX

102

System Interfaces Migration

Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT
flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC
flag.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

This page is revised and the openat() function is added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

open_memstream, open_wmemstream

Purpose:

Synopsis:

Open a dynamic memory buffer stream.

#i ncl ude <stdi o. h>

FI LE *open_nenstrean(char **bufp, size_ t *sizep);
#i ncl ude <wchar. h>

FI LE *open_wnenst rean(wchar _t **bufp, size_t *sizep);

The open_memstream() and open_wmemstream() functions create an I/O stream
associated with a dynamically allocated memory bulffer.

These functions are similar to fmemopen(), except that the memory is always
allocated dynamically by the function, and the stream is opened only for output.

Application writers should note that the buffer created by these functions should
be freed by the application after closing the stream, by means of a call to free().

An example program using the open_memstream () interface follows:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt

mai n (voi d)

{
FI LE *stream
char *buf;
size t len;
of f _t eob;

stream = open_nenstream (&buf, & en);
if (stream == NULL)

/* handl e error */ ;
fprintf (stream "hello ny world");
fflush (stream;
printf ("buf=%, |en=%u\n", buf, len);
eob = ftello(stream;
fseeko (stream 0, SEEK SET);
fprintf (stream "good-bye");
fseeko (stream eob, SEEK SET);

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

fclose (stream;

printf ("buf=%, |en=%u\n", buf, len);
free (buf);

return O;

}

This program produces the following output:

buf =hell o ny world, |en=14
buf =good- bye worl d, |en=14

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,

Extended API Set Part 1.
Issue 7: First released in Issue 7.
pause
Purpose: Suspend the thread until a signal is received.

Synopsis:  #i ncl ude <uni std. h>
i nt pause(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
pclose
Purpose: Close a pipe stream to or from a process.

cx Synopsis:  #i ncl ude <stdi o. h>

int pcl ose(FILE *stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
perror
Purpose: Write error messages to standard error.

Synopsis:  #i ncl ude <stdio. h>
voi d perror(const char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.
pipe
Purpose: Create an interprocess channel.

Synopsis:  #i ncl ude <uni std. h>
int pipe(int fildes[2]);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4 103



System Interfaces System Interfaces Migration

Issue 7: SD5-XSH-ERN-156 is applied, updating the DESCRIPTION to state the setting of
the pipe’s user ID and group ID.

Changes are made related to support for finegrained timestamps.

poll
Purpose: Input/output multiplexing.
Synopsis:  #i ncl ude <poll . h>
int poll(struct pollfd fds[], nfds_t nfds, int tineout);
Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #209 is applied, clarifying the POLLHUP
event.

The poll() function is moved from the XSI option to the Base.
Functionality relating to the XSI STREAMS option is marked obsolescent.

popen
Purpose: Initiate pipe streams to or from a process.
cx Synopsis:  #i ncl ude <stdi o. h>

FI LE *popen(const char *command, const char *node);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #029 is applied, clarifying the values for
mode in the DESCRIPTION.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX]} [EMFILE] error
condition from a “may fail” to a “shall fail”.
posix_fadvise
Purpose: File advisory information (ADVANCED REALTIME).
ADV Synopsis:  #i ncl ude <fcntl. h>

int posix_fadvise(int fd, off_t offset, off_t |en,
i nt advice);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Austin Group Interpretation 1003.1-2001 #024 is applied, changing the definition of
the [EINVAL] error.

104 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

ADV

ADV

TYM

ADV

posix_fallocate

Purpose:

Synopsis:

Derivation:

Issue 7:

File space control (ADVANCED REALTIME).
#i ncl ude <fcntl. h>

int posix fallocate(int fd, off _t offset, off_t |en);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Austin Group Interpretations 1003.1-2001 #022, #024, and #162 are applied,
changing the definition of the [EINVAL] error.

posix_madvise

Purpose:

Synopsis:

Derivation:

Issue 7:

Memory advisory information and alignment control (ADVANCED REALTIME).
#i ncl ude <sys/ nmman. h>

i nt posix_madvi se(void *addr, size_t len, int advice);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

No functional changes are made in this issue.

posix_mem_offset

Purpose:

Synopsis:

Derivation:

Issue 7:

Find offset and length of a mapped typed memory block (ADVANCED
REALTIME).

#i ncl ude <sys/ nman. h>

i nt posix_nmem of fset(const void *restrict addr, size_t l|en
off t *restrict off, size t *restrict contig |en,
int *restrict fildes);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

No functional changes are made in this issue.

posix_memalign

Purpose:

Synopsis:

Derivation:

Issue 7:

Aligned memory allocation (ADVANCED REALTIME).
#include <stdlib. h>

i nt posix_nmenmalign(void **menptr, size_t alignnment,
size t size);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Austin Group Interpretation 1003.1-2001 #058 is applied, clarifying the value of the
alignment argument in the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #152 is applied, clarifying the behavior
when the size of the space requested is 0.

The Authorized Guide to the Single UNIX Specification, Version 4 105



System Interfaces System Interfaces Migration

X8I

SPN

SPN

106

posix_openpt
Purpose: Open a pseudo-terminal device.

Synopsis:  #i ncl ude <stdlib. h>
#i ncl ude <fcntl . h>

i nt posi x_openpt (int oflag);

Derivation: First released in Issue 6.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
SD5-XSH-ERN-51 is applied, correcting an error in the EXAMPLES section.

posix_spawn, posix_spawnp
Purpose: Spawn a process (ADVANCED REALTIME).
Synopsis:  #i ncl ude <spawn. h>

i nt posix_spawn(pid_t *restrict pid,

const char *restrict path,

const posi x_spawn_file_actions_t *file_actions,

const posi x_spawnattr_t *restrict attrp

char *const argv[restrict], char *const envp[restrict]);
i nt posix_spawnp(pid_t *restrict pid,

const char *restrict file,

const posi x_spawn_file_actions_t *file_actions,

const posi x_spawnattr_t *restrict attrp

char *const argv[restrict], char *const envp[restrict]);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Functionality relating to the Threads option is moved to the Base.

posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen
Purpose: Add close or open action to spawn file actions object (ADVANCED REALTIME).
Synopsis:  #i ncl ude <spawn. h>

i nt posix_spawn_file_actions_addcl ose(
posi x_spawn_file_actions_t
*file actions, int fildes);
i nt posix_spawn_file_actions_addopen(
posi x_spawn_file_actions_t
*restrict file actions, int fildes,
const char *restrict path, int oflag, node_t node);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

posix_spawn_file_actions_adddup2
Purpose: Add dup?2 action to spawn file actions object (ADVANCED REALTIME).
SPN Synopsis:  #i ncl ude <spawn. h>

i nt posix_spawn_file_actions_adddup2(
posi x_spawn_file_actions_t
*file actions, int fildes, int newfildes);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawn_file_actions_destroy, posix_spawn_file_actions_init
Purpose: Destroy and initialize spawn file actions object (ADVANCED REALTIME).
SPN Synopsis:  #i ncl ude <spawn. h>

i nt posix_spawn_file_actions_destroy(
posi x_spawn_file_actions_t
*file_actions);

i nt posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_destroy, posix_spawnattr_init
Purpose: Destroy and initialize spawn attributes object (ADVANCED REALTIME).
SPN Synopsis:  #i ncl ude <spawn. h>

i nt posix_spawnattr_destroy(posi x_spawnattr_t *attr);
int posix_spawnattr _init(posix_spawnattr_t *attr);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getflags, posix_spawnattr_setflags

Purpose: Get and set the spawn-flags attribute of a spawn attributes object (ADVANCED
REALTIME).

SPN Synopsis:  #i ncl ude <spawn. h>

i nt posix_spawnattr_getfl ags(
const posi x_spawnattr_t *restrict attr,
short *restrict flags);

i nt posix_spawnattr_setfl ags(
posi Xx_spawnattr_t *attr, short flags);

The Authorized Guide to the Single UNIX Specification, Version 4 107



System Interfaces System Interfaces Migration

SPN

SPN

SPN

108

PS

PS

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getpgroup, posix_spawnattr_setpgroup

Purpose: Get and set the spawn-pgroup attribute of a spawn attributes object (ADVANCED
REALTIME).

Synopsis:  #i ncl ude <spawn. h>

i nt posi x_spawnattr_get pgroup(
const posi x_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

i nt posix_spawnattr_set pgroup(posi x_spawnattr_t *attr,
pi d_t pgroup);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getschedparam, posix_spawnattr_setschedparam

Purpose: Get and set the spawn-schedparam attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis:  #i ncl ude <spawn. h>
#i ncl ude <sched. h>

i nt posi x_spawnattr_get schedparan(const posix_spawnattr _t
*restrict attr, struct sched_param *restrict schedparan;
i nt posi x_spawnattr_set schedpar an{
posi Xx_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparan;

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy

Purpose: Get and set the spawn-schedpolicy attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis:  #i ncl ude <spawn. h>
#i ncl ude <sched. h>

i nt posi x_spawnattr_get schedpol i cy(const posix_spawnattr _t
*restrict attr, int *restrict schedpolicy);

i nt posi x_spawnattr_set schedpolicy(posi x_spawnattr_t *attr,
i nt schedpolicy);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault

Purpose: Get and set the spawn-sigdefault attribute of a spawn attributes object
(ADVANCED REALTIME).
SPN Synopsis:  #i ncl ude <si gnal . h>

#i ncl ude <spawn. h>

i nt posix_spawnattr_getsi gdefault (const posix_spawnattr _t
*restrict attr, sigset t *restrict sigdefault);

i nt posix_spawnattr_set si gdefaul t (
posi Xx_spawnattr_t *restrict attr,
const sigset t *restrict sigdefault);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getsigmask, posix_spawnattr_setsigmask

Purpose: Get and set the spawn-sigmask attribute of a spawn attributes object
(ADVANCED REALTIME).
SPN Synopsis:  #i ncl ude <si gnal . h>

#i ncl ude <spawn. h>

i nt posi x_spawnattr_getsi gmask(
const posi x_spawnattr_t *restrict attr,
sigset t *restrict signmask);
i nt posix_spawnattr_set si gmask(
posi Xx_spawnattr_t *restrict attr,
const sigset t *restrict sigmask);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_trace_attr_destroy, posix_trace_attr_init
Purpose: Destroy and initialize the trace stream attributes object (TRACING).
oB TRC Synopsis:  #i ncl ude <trace. h>

int posix_trace_ attr_destroy(trace_attr_t *attr);
int posix_trace_attr_init(trace_attr_t *attr);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_attr_destroy() and posix_trace_attr_init() functions are marked
obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4 109



System Interfaces System Interfaces Migration

OB TRC

OB TRC

TRI

TRL

TRI

TRL

110

posix_trace_attr_getclockres, posix_trace_attr_getcreatetime, posix_trace_attr_getgenversion,
posix_trace_attr_getname, posix_trace_attr_setname

Purpose: Retrieve and set information about a trace stream (TRACING).

Synopsis:  #i ncl ude <tinme. h>
#i ncl ude <trace. h>

int posix_trace_attr_getcl ockres(const trace_attr_t *attr,
struct tinmespec *resol ution);

int posix trace_attr_getcreatetine(const trace attr_t *attr,
struct tinmespec *createtine);

#i ncl ude <trace. h>

int posix_trace_attr_getgenversion(const trace attr_t *attr,
char *genversion);

int posix trace_attr_getnane(const trace_attr_t *attr,
char *tracenane);

int posix_trace_attr_setnane(trace_attr_t *attr
const char *tracenane);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(),
posix_trace_attr_getgenversion(), posix_trace_attr_getname(), and
posix_trace_attr_setname() functions are marked obsolescent.

posix_trace_attr_getinherited, posix_trace_attr_getlogfullpolicy,
posix_trace_attr_getstreamfullpolicy, posix_trace_attr_setinherited,
posix_trace_attr_setlogfullpolicy, posix_trace_attr_setstreamfullpolicy

Purpose: Retrieve and set the behavior of a trace stream (TRACING).
Synopsis:  #i ncl ude <trace. h>

int posix_ trace_attr_getinherited(
const trace_attr_t *restrict attr,
int *restrict inheritancepolicy);
int posix_trace_attr_getlogfull policy(
const trace_attr_t *restrict attr,
int *restrict |ogpolicy);
int posix_trace_attr_getstreanfullpolicy(
const trace_attr_t *restrict
attr, int *restrict streanpolicy);
int posix_trace_attr_setinherited(trace_attr_t *attr,
i nt inheritancepolicy);
int posix_trace_attr_setlogfullpolicy(trace attr_t *attr,
int |ogpolicy);
int posix_ trace attr_setstreanfullpolicy(trace attr_t *attr,
i nt streanpolicy);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: SD5-XSH-ERN-116 is applied, adding the missing restrict keyword to the
posix_trace_attr_getstreamfullpolicy () function declaration.

These functions are marked obsolescent.

A Source Book from The Open Group (2010)



System Interfaces Migration

OB TRC

TRL

TRL

OB TRC

posix_trace_attr_getlogsize, posix_trace_attr_getmaxdatasize,

posix_trace_attr_getmaxsystemeventsize, posix_trace_attr_getmaxusereventsize,
posix_trace_attr_getstreamsize, posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize,
posix_trace_attr_setstreamsize

Purpose:

Synopsis:

Derivation:

Issue 7:

Retrieve and set trace stream size attributes (TRACING).

#i ncl ude <sys/types. h>
#i ncl ude <trace. h>

int posix_trace_attr_getl ogsi ze(
const trace_attr_t *restrict attr,
size t *restrict |ogsize);
int posix_trace_attr_get naxdat asi ze(
const trace_attr_t *restrict attr,
size_ t *restrict naxdatasize);
int posix_trace_attr_get maxsysteneventsi ze(
const trace_attr_t *restrict attr,
size t *restrict eventsize);
int posix_trace_attr_get naxusereventsi ze(
const trace_attr_t *restrict attr,
size t data len, size t *restrict eventsize);
int posix_trace_attr_getstreansi ze(
const trace_attr_t *restrict attr,
size t *restrict streansize);
int posix_trace_attr_setlogsize(trace_attr_t *attr,
size t |ogsize);
int posix_trace_attr_setnaxdatasi ze(trace_ attr_t *attr,
size_t nmaxdat asi ze);
int posix_ trace attr_setstreansize(trace_ attr_t *attr,
size_t streansize);

First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

These functions are marked obsolescent.

posix_trace_clear

Purpose:

Synopsis:

Derivation:

Issue 7:

Clear trace stream and trace log (TRACING).

#i ncl ude <sys/types. h>
#i ncl ude <trace. h>

int posix trace clear(trace_id_ t trid);

First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

The posix_trace_clear () function is marked obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4

System Interfaces

111



System Interfaces System Interfaces Migration

posix_trace_close, posix_trace_open, posix_trace_rewind
Purpose: Trace log management (TRACING).
oB TRC Synopsis:  #i ncl ude <trace. h>

TRL int posix_trace_close(trace_id t trid);
int posix trace_open(int file_desc, trace_id t *trid);
int posix_trace rewind(trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions are
marked obsolescent.

posix_trace_create, posix_trace_create_withlog, posix_trace_flush, posix_trace_shutdown
Purpose: Trace stream initialization, flush, and shutdown from a process (TRACING).

oB TRC Synopsis:  #i ncl ude <sys/types. h>
#i ncl ude <trace. h>

int posix_ trace_create(pid_t pid,
const trace_attr_t *restrict attr,
trace id t *restrict trid);

TRL int posix trace create withlog(pid_t pid,

const trace attr_t *restrict attr, int file_desc,
trace id t *restrict trid);

int posix_trace_flush(trace_id t trid);

i nt posix_trace_shutdown(trace id t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.
Issue 7: These functions are marked obsolescent.

SD5-XSH-ERN-154 is applied, updating the DESCRIPTION to remove the
posix_trace_trygetnext_event() function from the list of functions that use the trid
argument.

posix_trace_event, posix_trace_eventid_open

Purpose: Trace functions for instrumenting application code (TRACING).

oB TRC Synopsis:  #i ncl ude <sys/types. h>
#i ncl ude <trace. h>

voi d posi x_trace_event(trace_event _id_t event_id,
const void *restrict data ptr, size_t data_len);

int posix_trace_eventid_open(const char *restrict event_nane,
trace _event id t *restrict event id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_event() and posix_trace_eventid_open() functions are marked
obsolescent.

112 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

posix_trace_eventid_equal, posix_trace_eventid_get_name, posix_trace_trid_eventid_open
Purpose: Manipulate the trace event type identifier (TRACING).
oB TRC Synopsis:  #i ncl ude <trace. h>

int posix_trace_eventid_equal (trace_id_t trid,
trace _event id t eventl
trace _event _id t event2);

int posix_trace_eventid_get_nanme(trace_id_t trid,
trace _event _id t event, char *event nane);

TEF int posix_trace_ trid eventid open(trace_id_t trid,

const char *restrict event_ nane,
trace _event id t *restrict event);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: These functions are marked obsolescent.

posix_trace_eventset_add, posix_trace_eventset_del, posix_trace_eventset_empty,
posix_trace_eventset_fill, posix_trace_eventset_ismember

Purpose: Manipulate trace event type sets (TRACING).
oB TRC Synopsis:  #i ncl ude <trace. h>

TEF int posix_trace_eventset _add(trace_event _id_t event_id,

trace_event _set t *set);

int posix_trace_eventset _del (trace_event _id_t event_id,
trace_event _set t *set);

int posix_trace_eventset _enpty(trace_event_set t *set);

int posix_trace_eventset fill(trace_event_set t *set,
i nt what);

i nt posix_trace_eventset _isnenber(trace_event _id_t event_id,
const trace_event_set_t *restrict set,
int *restrict ismenber);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_eventset_add (), posix_trace_eventset_del(),
posix_trace_eventset_empty (), posix_trace_eventset_fill(), and
posix_trace_eventset_ismember () functions are marked obsolescent.

posix_trace_eventtypelist_getnext_id, posix_trace_eventtypelist_rewind

Purpose: Iterate over a mapping of trace event types (TRACING).

oB TRC Synopsis:  #i ncl ude <trace. h>

int posix_trace_eventtypelist _getnext_id(trace_id_ t trid,
trace _event id t *restrict event,
int *restrict unavail abl e);

int posix trace_eventtypelist rewind(trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

The Authorized Guide to the Single UNIX Specification, Version 4 113



System Interfaces System Interfaces Migration

OB TRC

OB TRC

TEF

OB TRC

114

Issue 7: The posix_trace_eventtypelist_getnext_id() and posix_trace_eventtypelist_rewind ()
functions are marked obsolescent.

posix_trace_get_attr, posix_trace_get_status
Purpose: Retrieve the trace attributes or trace status (TRACING).
Synopsis:  #i ncl ude <trace. h>

int posix_trace get_attr(trace_id_t trid, trace_attr_t *attr);
int posix_trace_get_status(trace_id_t trid,
struct posix_trace_status_info *statusinfo);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_get_attr() and posix_trace_get_status() functions are marked
obsolescent.

posix_trace_get_filter, posix_trace_set_filter
Purpose: Retrieve and set the filter of an initialized trace stream (TRACING).
Synopsis:  #i ncl ude <trace. h>

int posix trace_get filter(trace_id_t trid,
trace_event _set t *set);

int posix trace_set filter(trace_id_t trid,
const trace_event _set t *set, int how);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_get_filter() and posix_trace_set_filter() functions are marked
obsolescent.

posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event
Purpose: Retrieve a trace event (TRACING).

Synopsis:  #i ncl ude <sys/types. h>
#i ncl ude <trace. h>

i nt posix_trace_getnext_event(trace_id_t trid,
struct posix_trace_event _info *restrict event,
void *restrict data, size_t num bytes,
size t *restrict data len, int *restrict unavail able);
i nt posix_trace_tinmedget next_event(trace_id_t trid,
struct posix_trace_event _info *restrict event,
void *restrict data, size_t num bytes,
size t *restrict data len, int *restrict unavail abl e,
const struct timespec *restrict abstine);
int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event _info *restrict event,
void *restrict data, size_t num bytes,
size t *restrict data len, int *restrict unavail able);

A Source Book from The Open Group (2010)



System Interfaces Migration

OB TRC

TYM

TYM

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_getnext_event(), posix_trace_timedgetnext_event (),

posix_trace_trygetnext_event () functions are marked obsolescent.

Functionality relating to the Timers option is moved to the Base.

posix_trace_start, posix_trace_stop
Purpose: Trace start and stop (TRACING).
Synopsis: ~ #i ncl ude <trace. h>

int posix trace_start(trace_id t trid);
int posix trace_stop (trace_id_ t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

System Interfaces

and

Issue 7: The posix_trace_start () and posix_trace_stop () functions are marked obsolescent.

posix_typed_mem_get_info
Purpose: Query typed memory information (ADVANCED REALTIME).
Synopsis:  #i ncl ude <sys/ mman. h>

i nt posix_typed_nemget _info(int fildes,
struct posix_typed_nmem.info *info);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: No functional changes are made in this issue.

posix_typed_mem_open
Purpose: Open a typed memory object (ADVANCED REALTIME).
Synopsis:  #i ncl ude <sys/mman. h>

i nt posi x_typed_nem open(const char *nane, int oflag,
int tflag);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied,

implementations to support pathnames longer than {PATH_MAX]}.

pow, powf, powl
Purpose: Power function.
Synopsis:  #i ncl ude <math. h>

doubl e pow(doubl e x, double y);
float powf(float x, float y);
| ong doubl e pow (|1 ong double x, |ong double y);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4

allowing

115



System Interfaces System Interfaces Migration

CX

116

Issue 7: ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #51 (SD5-XSH-ERN-81) is
applied.

pselect, select
Purpose: Synchronous I/O multiplexing.

Synopsis:  #i ncl ude <sys/sel ect. h>

int pselect(int nfds, fd set *restrict readfds,
fd set *restrict witefds, fd_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset t *restrict sigmask);

int select(int nfds, fd set *restrict readfds,
fd set *restrict witefds, fd_set *restrict errorfds,
struct tineval *restrict tineout);

void FD CLR(int fd, fd _set *fdset);

int FD ISSET(int fd, fd_set *fdset);

void FD SET(int fd, fd set *fdset);

void FD ZERQ(fd_set *fdset);

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XSH-ERN-122 is applied, adding text to the DESCRIPTION for when a thread
is canceled during a call to pselect (), and adding example code to the RATIONALE.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

psiginfo, psignal
Purpose: Print signal information to standard error.
Synopsis:  #i ncl ude <si gnal . h>

voi d psiginfo(const siginfo_ t *pinfo, const char *message);
voi d psignal (int signum const char *nessage);

The psiginfo() and psignal() functions print a message out on stderr associated with
a signal number.

Application writers should note that System V historically has psignal() and
psiginfo() in <siginfo.h>. However, the <siginfo.h> header is not specified in the
Base Definitions volume of IEEE Std 1003.1-2001, and the type siginfo_t is defined
in <signal.h>.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

pthread_atfork

Purpose:

Synopsis:

Derivation:

Issue 7:

Register fork handlers.
#i ncl ude <pt hread. h>

int pthread atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

First released in Issue 5. Derived from the POSIX Threads Extension.
The pthread_atfork () function is moved from the Threads option to the Base.

SD5-XSH-ERN-145 is applied, updating the RATIONALE to confirm the
requirement that a child of a multi-threaded process may only execute async-
signal-safe operations until such time as one of the exec functions is called.

pthread_attr_destroy, pthread_attr_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy and initialize the thread attributes object.
#i ncl ude <pt hread. h>

int pthread attr_destroy(pthread attr_t *attr);
int pthread attr_init(pthread attr_t *attr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_destroy() and pthread_attr_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The [EBUSY] error for an already initialized thread attributes object is removed;
this condition results in undefined behavior.

pthread_attr_getdetachstate, pthread_attr_setdetachstate

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the detachstate attribute.
#i ncl ude <pt hread. h>

int pthread attr_getdetachstate(const pthread attr _t *attr,
i nt *detachstate);

int pthread attr_setdetachstate(pthread attr_t *attr,
i nt detachstate);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are
moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 117



System Interfaces System Interfaces Migration

pthread_attr_getguardsize, pthread_attr_setguardsize
Purpose: Get and set the thread guardsize attribute.
Synopsis:  #i ncl ude <pt hread. h>

int pthread attr_getguardsi ze(
const pthread attr_t *restrict attr,
size t *restrict guardsize);

int pthread attr_setguardsi ze(pthread attr _t *attr,
size_t guardsize);

Derivation: First released in Issue 5.

Issue 7: SD5-XSH-ERN-111 is applied, removing the reference to the stack attribute in the
DESCRIPTION.

SD5-XSH-ERN-175 is applied, updating the DESCRIPTION to note that the default
size of the guard area is implementation-defined.

The pthread_attr_getguardsize() and pthread_attr_setquardsize() functions are moved
from the XSI option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.
pthread_attr_getinheritsched, pthread_attr_setinheritsched
Purpose: Get and set the inheritsched attribute (REALTIME THREADS).
TPS Synopsis:  #i ncl ude <pt hr ead. h>

int pthread_attr_getinheritsched(
const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
i nt inheritsched);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getschedparam, pthread_attr_setschedparam

Purpose: Get and set the schedparam attribute.

Synopsis:  #i ncl ude <pt hread. h>

int pthread _attr_get schedparan
const pthread attr_t *restrict attr,
struct sched param *restrict paran);

int pthread attr_setschedparanm(pthread attr_t *restrict attr,
const struct sched param *restrict param;

118 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

TPS

TPS

Derivation:

Issue 7:

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are
moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getschedpolicy, pthread_attr_setschedpolicy

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the schedpolicy attribute (REALTIME THREADS).
#i ncl ude <pt hr ead. h>

int pthread_attr_getschedpolicy(
const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr,
int policy);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getscope, pthread_attr_setscope

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the contentionscope attribute (REALTIME THREADS).
#i ncl ude <pt hread. h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t *attr,
i nt contentionscope);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_getscope() and pthread_attr_setscope() functions are moved from
the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 119



System Interfaces System Interfaces Migration

pthread_attr_getstack, pthread_attr_setstack
Purpose: Get and set stack attributes.
TsA Tss Synopsis:  #i ncl ude <pthread. h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size t *restrict stacksize);
int pthread_attr_setstack(pthread_attr_t *attr,
voi d *stackaddr, size t stacksize);

Derivation: First released in Issue 6.

Issue 7: SD5-XSH-ERN-66 is applied, correcting the use of attr in the [EINVAL] error
condition.

Austin Group Interpretation 1003.1-2001 #057 is applied, clarifying the behavior if
the function is called before the stackaddr attribute is set.

SD5-XSH-ERN-157 is applied, updating the APPLICATION USAGE section.

The description of the stackaddr attribute is updated in the DESCRIPTION and
APPLICATION USAGE sections.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.
pthread_attr_getstacksize, pthread_attr_setstacksize
Purpose: Get and set the stacksize attribute.
TSS Synopsis:  #i ncl ude <pt hr ead. h>

int pthread_attr_getstacksize(
const pthread_attr_t *restrict attr,
size t *restrict stacksize);

int pthread_attr_setstacksize(pthread attr_t *attr,
size_ t stacksize);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are moved
from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_barrier_destroy, pthread_barrier_init

Purpose: Destroy and initialize a barrier object.

Synopsis:  #i ncl ude <pt hread. h>

int pthread barrier_destroy(pthread barrier_t *barrier);

int pthread barrier_init(pthread barrier_t *restrict barrier
const pthread barrierattr_t *restrict attr,
unsi gned count);

120 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

TSH

Derivation:

Issue 7:

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_barrier_destroy() and pthread_barrier_init() functions are moved from
the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object and an uninitialized barrier
attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a barrier that is in use or an already initialized barrier object
is removed; this condition results in undefined behavior.

pthread_barrier wait

Purpose:

Synopsis:

Derivation:

Issue 7:

Synchronize at a barrier.

#i ncl ude <pt hread. h>

int pthread barrier _wait(pthread barrier_t *barrier);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_barrier_wait () function is moved from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object is removed; this condition
results in undefined behavior.

pthread_barrierattr_destroy, pthread_barrierattr_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy and initialize the barrier attributes object.
#i ncl ude <pt hread. h>

int pthread barrierattr_destroy(pthread barrierattr_t *attr);
int pthread barrierattr_init(pthread _barrierattr_t *attr);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_barrierattr_destroy() and pthread_barrierattr_init() functions are moved
from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this
condition results in undefined behavior.

pthread_barrierattr_getpshared, pthread_barrierattr_setpshared

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the process-shared attribute of the barrier attributes object.
#i ncl ude <pt hread. h>

int pthread_barrierattr_getpshared(
const pthread_barrierattr_t *restrict attr,
int *restrict pshared);

int pthread_barrierattr_setpshared(
pthread_barrierattr_t *attr, int pshared);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000

The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions
are moved from the Barriers option.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 121



System Interfaces System Interfaces Migration

122

pthread_cancel
Purpose: Cancel execution of a thread.
Synopsis:  #i ncl ude <pt hread. h>
i nt pthread _cancel (pthread_t thread);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cancel () function is moved from the Threads option to the Base.
Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_cleanup_pop, pthread_cleanup_push

Purpose: Establish cancellation handlers.

Synopsis:  #i ncl ude <pt hread. h>

voi d pt hread_cl eanup_pop(int execute);
voi d pthread_cl eanup_push(void (*routine)(void*), void *arg);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cleanup_pop() and pthread_cleanup_push() functions are moved from
the Threads option to the Base.

pthread_cond_broadcast, pthread_cond_signal

Purpose: Broadcast or signal a condition.

Synopsis:  #i ncl ude <pt hread. h>

i nt pthread _cond _broadcast (pthread cond_t *cond);
int pthread cond_signal (pthread cond_t *cond);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cond_broadcast () and pthread_cond_signal () functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable is removed; this
condition results in undefined behavior.

pthread_cond_destroy, pthread_cond_init

Purpose: Destroy and initialize condition variables.

Synopsis:  #i ncl ude <pt hread. h>

int pthread _cond destroy(pthread cond t *cond);

int pthread cond init(pthread cond t *restrict cond,
const pthread condattr_t *restrict attr);

pt hread_cond_t cond = PTHREAD COND | NI TI ALI ZER

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

The pthread_cond_destroy() and pthread_cond_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable and an uninitialized
condition variable attributes object is removed; this condition results in undefined
behavior.

The [EBUSY] error for a condition variable already in use or an already initialized
condition variable is removed; this condition results in undefined behavior.

pthread_cond_timedwait, pthread_cond_wait

Purpose:

Synopsis:

Derivation:

Issue 7:

Wait on a condition.
#i ncl ude <pt hread. h>

int pthread cond tinedwait(pthread cond t *restrict cond,
pthread _nmutex t *restrict nutex,
const struct timespec *restrict abstine);

int pthread cond wait(pthread cond t *restrict cond,
pthread_nmutex t *restrict nutex);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

SD5-XSH-ERN-44 is applied, changing the definition of the “shall fail” case of the
[EINVAL] error.

Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_cond_timedwait() and pthread_cond_wait() functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable or uninitialized mutex
object is removed; this condition results in undefined behavior"

The [EPERM] error is revised and moved to the “shall fail” list of error conditions
for the pthread_cond_timedwait () function.

The DESCRIPTION is updated to clarify the behavior when mutex is a robust
mutex.

The ERRORS section is updated to include “shall fail” cases for
PTHREAD_MUTEX_ERRORCHECK mutexes.

The DESCRIPTION is rewritten to clarify that undefined behavior occurs only for
mutexes where the [EPERM] error is not mandated.

pthread_condattr_destroy, pthread_condattr_init

Purpose:

Synopsis:

Derivation:

Destroy and initialize the condition variable attributes object.
#i ncl ude <pt hread. h>

int pthread condattr_destroy(pthread _condattr t *attr);
int pthread condattr_init(pthread_condattr_t *attr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The Authorized Guide to the Single UNIX Specification, Version 4 123



System Interfaces System Interfaces Migration

TSH

124

Issue 7: The pthread_condattr_destroy() and pthread_condattr_init() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.

pthread_condattr_getclock, pthread_condattr_setclock

Purpose: Get and set the clock selection condition variable attribute.

Synopsis:  #i ncl ude <pt hread. h>

int pthread condattr_getcl ock(
const pthread condattr_t *restrict attr,
clockid t *restrict clock_ id);

int pthread condattr_setcl ock(pthread condattr_t *attr,
clockid t clock_ id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_condattr_getclock() and pthread_condattr_setclock() functions are moved
from the Clock Selection option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.
pthread_condattr_getpshared, pthread_condattr_setpshared
Purpose: Get and set the process-shared condition variable attributes.
Synopsis:  #i ncl ude <pt hr ead. h>

i nt pthread_condattr_get pshared(
const pthread_condattr_t *restrict attr,
int *restrict pshared);

i nt pthread_condattr_setpshared(pthread_condattr_t *attr,
i nt pshared);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.

pthread_create

Purpose: Thread creation.

Synopsis:  #i ncl ude <pt hread. h>

int pthread create(pthread t *restrict thread,
const pthread attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

OB XSI

Issue 7:

The pthread_create() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_detach

Purpose:

Synopsis:

Derivation:

Issue 7:

Detach a thread.
#i ncl ude <pt hread. h>
int pthread detach(pthread_ t thread);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_detach () function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in
undefined behavior.

pthread_equal

Purpose:

Synopsis:

Derivation:

Issue 7:

pthread_exit

Purpose:

Synopsis:

Derivation:

Issue 7:

Compare thread IDs.
#i ncl ude <pt hread. h>
int pthread equal (pthread t t1, pthread t t2);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_equal() function is moved from the Threads option to the Base.

Thread termination.
#i ncl ude <pt hread. h>
void pthread exit(void *value_ptr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_exit () function is moved from the Threads option to the Base.

pthread_getconcurrency, pthread_setconcurrency

Purpose:

Synopsis:

Derivation:

Get and set the level of concurrency.
#i ncl ude <pt hr ead. h>

i nt pthread_getconcurrency(void);
i nt pthread_setconcurrency(int new_ | evel);

First released in Issue 5.

The Authorized Guide to the Single UNIX Specification, Version 4 125



System Interfaces System Interfaces Migration

TCT

TPS

126

Issue 7: The pthread_getconcurrency() and pthread_setconcurrency() functions are marked
obsolescent.

pthread_getcpuclockid

Purpose: Access a thread CPU-time clock (ADVANCED REALTIME THREADS).

Synopsis:  #i ncl ude <pt hr ead. h>
#i ncl ude <time. h>

i nt pthread_get cpucl ockid(pthread_t thread_id,
clockid t *clock id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: The pthread_getcpuclockid () function is moved from the Threads option.
Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_getschedparam, pthread_setschedparam

Purpose: Dynamic thread scheduling parameters access (REALTIME THREADS).

Synopsis:  #i ncl ude <pt hr ead. h>

i nt pthread_get schedparan(pthread_t thread,
int *restrict policy,
struct sched_param *restrict param;

i nt pthread_setschedparan(pthread_t thread, int policy,
const struct sched_param *paran);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_getschedparam () and pthread_setschedparam () functions are moved from
the Threads option.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_getspecific, pthread_setspecific

Purpose: Thread-specific data management.

Synopsis:  #i ncl ude <pt hread. h>

voi d *pthread_getspecific(pthread key t key);
int pthread setspecific(pthread key t key, const void *val ue);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_getspecific() and pthread_setspecific() functions are moved from the
Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

pthread_join

Purpose:

Synopsis:

Derivation:

Issue 7:

deleted with pthread_key_delete() is removed; this condition results in undefined
behavior.

Wait for thread termination.
#i ncl ude <pt hread. h>
int pthread join(pthread t thread, void **val ue _ptr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_join () function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in
undefined behavior.

The [EDEADLK] error for the calling thread is removed; this condition results in
undefined behavior.

pthread_key_create

Purpose:

Synopsis:

Derivation:

Issue 7:

Thread-specific data key creation.
#i ncl ude <pt hread. h>

int pthread key create(pthread_key t *key,
void (*destructor)(void*));

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_key_create() function is moved from the Threads option to the Base.

pthread_key_delete

Purpose:

Synopsis:

Derivation:

Issue 7:

Thread-specific data key deletion.
#i ncl ude <pt hread. h>
i nt pthread _key del ete(pthread_key t key);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_key_delete() function is moved from the Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key
deleted with pthread_key_delete() is removed; this condition results in undefined
behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 127



System Interfaces System Interfaces Migration

CX

128

pthread_kill
Purpose: Send a signal to a thread.
Synopsis:  #i ncl ude <si gnal . h>

int pthread_kill(pthread_t thread, int sig);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_kill () function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_mutex_consistent
Purpose: Mark state protected by robust mutex as consistent.
Synopsis:  #i ncl ude <pt hread. h>
int pthread nutex_consistent(pthread nutex t *nutex);

If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent ()
function can be used to mark the state protected by the mutex referenced by mutex
as consistent again.

Application writers should note that the pthread_mutex_consistent () function is only
responsible for notifying the implementation that the state protected by the mutex
has been recovered and that normal operations with the mutex can be resumed. It
is the responsibility of the application to recover the state so it can be reused. If the
application is not able to perform the recovery, it can notify the implementation
that the situation is unrecoverable by a call to pthread_mutex_unlock() without a
prior call to pthread_mutex_consistent(), in which case subsequent threads that
attempt to lock the mutex will fail to acquire the lock and be returned

[ENOTRECOVERABLE].

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 3.

Issue 7: First released in Issue 7.

pthread_mutex_destroy, pthread_mutex_init
Purpose: Destroy and initialize a mutex.
Synopsis:  #i ncl ude <pt hread. h>

i nt pthread nutex_destroy(pthread nutex_ t *mutex);

int pthread nutex_init(pthread nutex_t *restrict nutex,
const pthread nutexattr_t *restrict attr);

pt hread_nmutex_t mnmutex = PTHREAD MUTEX | NI Tl ALl ZER

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_mutex_destroy() and pthread_mutex_init() functions are moved from

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

RPP | TPP

the Threads option to the Base.

The [EINVAL] error for an uninitialized mutex or an uninitialized mutex attributes
object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked mutex, a mutex that is referenced, or an already
initialized mutex is removed; this condition results in undefined behavior.

pthread_mutex_getprioceiling, pthread_mutex_setprioceiling

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the priority ceiling of a mutex (REALTIME THREADS).
#i ncl ude <pt hr ead. h>

i nt pthread_nutex_getprioceiling(
const pthread_nutex_t *restrict mutex,
int *restrict prioceiling);
i nt pthread_nutex_setprioceiling(
pthread_nutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Austin Group Interpretation 1003.1-2001 #052 is applied, adding [EDEADLK] as a
“may fail” error.

SD5-XSH-ERN-158 is applied, updating the ERRORS section to include a “shall
fail” error case for when the protocol attribute of mutex is
PTHREAD_PRIO_NONE.

The pthread_mutex_getprioceiling () and pthread_mutex_setprioceiling() functions are
moved from the Threads option to require support of either the Robust Mutex
Priority Protection option or the Non-Robust Mutex Priority Protection option.

The DESCRIPTION and ERRORS sections are updated to account properly for all
of the various mutex types.

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock and unlock a mutex.
#i ncl ude <pt hread. h>

int pthread nutex_ | ock(pthread nutex_t *mutex);
int pthread nutex_tryl ock(pthread nutex_ t *mutex);
i nt pthread _nutex_unl ock(pthread nutex_t *nutex);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

SD5-XSH-ERN-43 is applied, marking the “shall fail” case of the [EINVAL] error as
dependent on the Thread Priority Protection option.

Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock()
functions are moved from the Threads option to the Base.

The PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,

The Authorized Guide to the Single UNIX Specification, Version 4 129



System Interfaces

System Interfaces Migration

PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT extended
mutex types are moved from the XSI option to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to
an initialized mutex.

The ERRORS section is updated to account properly for all of the various mutex
types.

pthread_mutex_timedlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock a mutex.

#i ncl ude <pt hread. h>
#i ncl ude <tine. h>

int pthread nutex_tinedl ock(pthread nutex_t *restrict nutex,
const struct timespec *restrict abstine);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_mutex_timedlock() function is moved from the Timeouts option to the
Base.

Functionality relating to the Timers option is moved to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to
an initialized mutex.

The ERRORS section is updated to account properly for all of the various mutex
types.

pthread_mutexattr_destroy, pthread_mutexattr_init

Purpose:

Synopsis:

Derivation:

Issue 7:

130

Destroy and initialize the mutex attributes object.
#i ncl ude <pt hread. h>

int pthread nutexattr_destroy(pthread nutexattr t *attr);
int pthread nutexattr _init(pthread nutexattr t *attr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

RPP | TPP

MC1

pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the prioceiling attribute of the mutex attributes object (REALTIME
THREADS).

#i ncl ude <pt hr ead. h>

int pthread_nutexattr_getprioceiling(
const pthread_nutexattr_t *restrict attr,
int *restrict prioceiling);

int pthread_nutexattr_setprioceiling(
pthread_nutexattr_t *attr, int prioceiling);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The  pthread_mutexattr_getprioceiling() —and  pthread_mutexattr_setprioceiling ()
functions are moved from the Threads option to require support of either the
Robust Mutex Priority Protection option or the Non-Robust Mutex Priority
Protection option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the protocol attribute of the mutex attributes object (REALTIME
THREADS).

#i ncl ude <pt hread. h>

i nt pthread_nutexattr_getprotocol (const pthread_nutexattr t
*restrict attr, int *restrict protocol);

int pthread_nutexattr_setprotocol (pthread_nutexattr_t *attr,
i nt protocol);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

SD5-XSH-ERN-135 is applied, updating the DESCRIPTION to define a default
value for the protocol attribute.

SD5-XSH-ERN-188 is applied, clarifying that propagation of the priority
inheritance effect only applies if the other mutex has the protocol attribute
PTHREAD_PRIO_INHERIT.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions
are moved from the Threads option to require support of either the Non-Robust
Mutex Priority Protection option or the Non-Robust Mutex Priority Inheritance
option or the Robust Mutex Priority Protection option or the Robust Mutex
Priority Inheritance option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 131



System Interfaces System Interfaces Migration

pthread_mutexattr_getpshared, pthread_mutexattr_setpshared
Purpose: Get and set the process-shared attribute.
TSH Synopsis:  #i ncl ude <pt hr ead. h>

i nt pthread_nutexattr_get pshared(const pthread_nutexattr _t
*restrict attr, int *restrict pshared);

i nt pthread_nutexattr_set pshared(pthread _nmutexattr_t *attr,
i nt pshared);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_mutexattr_getpshared () and pthread_mutexattr_setpshared () functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_mutexattr_getrobust, pthread_mutexattr_setrobust
Purpose: Get and set the mutex robust attribute.
Synopsis:  #i ncl ude <pt hread. h>

int pthread nutexattr_getrobust(
const pthread nutexattr t *restrict attr,
int *restrict robust);

int pthread nutexattr_setrobust(pthread nutexattr_t *attr,
i nt robust);

The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions,
respectively, get and set the mutex robust attribute.

Valid values for robust include:

PTHREAD_MUTEX_STALLED
No special actions are taken if the owner of the mutex is terminated while
holding the mutex lock. This can lead to deadlocks if no other thread can
unlock the mutex.
This is the default value.

PTHREAD_MUTEX_ROBUST

If the process containing the owning thread of a robust mutex terminates
while holding the mutex lock, the next thread that acquires the mutex is
notified about the termination by the return value [EOWNERDEAD)] from the
locking function. If the owning thread of a robust mutex terminates while
holding the mutex lock, the next thread that acquires the mutex may be
notified about the termination by the return value [EOWNERDEAD]. The
notified thread can then attempt to mark the state protected by the mutex as
consistent again by a call to pthread_mutex_consistent(). After a subsequent
successful call to pthread_mutex_unlock(), the mutex lock is released and can be
used normally by other threads. If the mutex is unlocked without a call to
pthread_mutex_consistent (), it is placed in a permanently unusable state and all
attempts to lock the mutex fail with the error [ENOTRECOVERABLE]. The
only permissible operation on such a mutex is pthread_mutex_destroy().

Application writers should note that the actions required to make the state

132 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

protected by the mutex consistent again are solely dependent on the application. If
it is not possible to make the state of a mutex consistent, robust mutexes can be
used to notify this situation by calling pthread_mutex_unlock() without a prior call
to pthread_mutex_consistent ().

If the state is declared inconsistent by calling pthread_mutex_unlock() without a
prior call to pthread_mutex_consistent (), a possible approach could be to destroy the
mutex and then reinitialize it. However, it should be noted that this is possible only
in certain situations where the state protected by the mutex has to be reinitialized
and coordination achieved with other threads blocked on the mutex, because
otherwise a call to a locking function with a reference to a mutex object invalidated
by a call to pthread_mutex_destroy () results in undefined behavior.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 3.

Issue 7: First released in Issue 7.

pthread_mutexattr_gettype, pthread_mutexattr_settype
Purpose: Get and set the mutex type attribute.
Synopsis:  #i ncl ude <pt hread. h>

int pthread nutexattr_gettype(
const pthread nutexattr_t *restrict attr,
int *restrict type);

int pthread nutexattr_settype(pthread nutexattr t *attr,
int type);

Derivation: First released in Issue 5.

Issue 7: The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions are
moved from the XSI option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_once

Purpose: Dynamic package initialization.

Synopsis:  #i ncl ude <pt hread. h>

int pthread once(pthread once_t *once_control
void (*init_routine)(void));
pt hread_once_t once_control = PTHREAD ONCE INIT;

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_once() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized pthread_once_t object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 133



System Interfaces System Interfaces Migration

pthread_rwlock_destroy, pthread_rwlock_init
Purpose: Destroy and initialize a read-write lock object.
Synopsis:  #i ncl ude <pt hread. h>

int pthread rw ock _destroy(pthread rw ock t *rw ock);
int pthread rw ock _init(pthread rwock t *restrict rw ock,
const pthread rw ockattr_t *restrict attr);
XSI pthread_rw ock_t rw ock = PTHREAD_ RW.OCK | NI Tl ALI ZER;

Derivation: First released in Issue 5.

Issue 7: Austin  Group Interpretation 1003.1-2001 #048 is applied, adding the
PTHREAD_RWLOCK_INITIALIZER macro.

The pthread_rwlock_destroy() and pthread_rwlock_init() functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object or read-write lock
attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked read-write lock object or an already initialized
read-write lock object is removed; this condition results in undefined behavior.
pthread_rwlock_rdlock, pthread_rwlock_tryrdlock
Purpose: Lock a read-write lock object for reading.
Synopsis:  #i ncl ude <pt hread. h>

int pthread rw ock _rdl ock(pthread rwl ock t *rw ock);
int pthread rw ock _tryrdl ock(pthread rwl ock t *rw ock);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_timedrdlock

Purpose: Lock a read-write lock for reading.

Synopsis:  #i ncl ude <pt hread. h>
#incl ude <tine. h>

int pthread rw ock_ti medrdl ock(
pthread rw ock t *restrict rw ock,
const struct timespec *restrict abstine);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_rwlock_timedrdlock() function is moved from the Timeouts option to
the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

134 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

pthread_rwlock_timedwrlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock a read-write lock for writing.

#i ncl ude <pt hread. h>
#i ncl ude <tine. h>

int pthread rw ock_ti medw | ock(
pthread rw ock t *restrict rw ock,
const struct timespec *restrict abstine);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_rwlock_timedwrlock() function is moved from the Timeouts option to
the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_trywrlock, pthread_rwlock_wrlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock a read-write lock object for writing.
#i ncl ude <pt hread. h>

int pthread rw ock _tryw !l ock(pthread rwl ock t *rw ock);
int pthread rw ock_wl ock(pthread rwl ock t *rw ock);

First released in Issue 5.

The pthread_rwlock_trywrlock() and pthread_rwlock_wrlock() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_unlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Unlock a read-write lock object.

#i ncl ude <pt hread. h>

int pthread rw ock _unl ock(pthread_rw ock t *rw ock);
First released in Issue 5.

The pthread_rwlock_unlock() function is moved from the Threads option to the
Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

The [EPERM] error for a read-write lock object for which the current thread does
not hold a lock is removed; this condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 135



System Interfaces System Interfaces Migration

TSH

136

pthread_rwlockattr_destroy, pthread_rwlockattr_init
Purpose: Destroy and initialize the read-write lock attributes object.
Synopsis:  #i ncl ude <pt hread. h>

int pthread rw ockattr_destroy(pthread rw ockattr _t *attr);
int pthread rw ockattr_init(pthread rw ockattr_t *attr);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlockattr_destroy () and pthread_rwlockattr_init() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock attributes object is
removed; this condition results in undefined behavior.
pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared
Purpose: Get and set the process-shared attribute of the read-write lock attributes object.
Synopsis:  #i ncl ude <pt hr ead. h>

int pthread_rw ockattr_get pshared(const pthread_rw ockattr _t
*restrict attr, int *restrict pshared);

int pthread_rw ockattr_set pshared(pthread_rw ockattr_t *attr,
i nt pshared);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared() functions
are moved from the Threads option.

The [EINVAL] error for an uninitialized read-write lock attributes object is
removed; this condition results in undefined behavior.

pthread_self

Purpose: Get the calling thread ID.

Synopsis:  #i ncl ude <pt hread. h>
pthread_t pthread_sel f(void);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #063 is applied, updating the RETURN
VALUE section to indicate that the pthread_self() function is always successful and
no return value is reserved to indicate an error.

The pthread_self() function is moved from the Threads option to the Base.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

TPS

CX

pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel

Purpose:

Synopsis:

Derivation:

Issue 7:

Set cancelability state.
#i ncl ude <pt hread. h>

int pthread setcancel state(int state, int *oldstate);
i nt pthread_setcancel type(int type, int *ol dtype);
voi d pt hread_testcancel (void);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel()
functions are moved from the Threads option to the Base.

pthread_setschedprio

Purpose:

Synopsis:

Derivation:

Issue 7:

Dynamic thread scheduling parameters access (REALTIME THREADS).
#i ncl ude <pt hr ead. h>
i nt pthread_setschedprio(pthread_t thread, int prio);

First released in Issue 6. Included as a response to IEEE PASC Interpretation 1003.1
#96.

The pthread_setschedprio() function is moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #069 is applied, updating the [EPERM]
error.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_sigmask, sigprocmask

Purpose:

Synopsis:

Derivation:

Issue 7:

Examine and change blocked signals.
#i ncl ude <si gnal . h>

i nt pthread_sigmask(int how, const sigset t *restrict set,
sigset t *restrict oset);

i nt sigprocmask(int how, const sigset t *restrict set,
sigset t *restrict oset);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

The pthread_sigmask () function is moved from the Threads option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 137



System Interfaces System Interfaces Migration

138

pthread_spin_destroy, pthread_spin_init
Purpose: Destroy or initialize a spin lock object.
Synopsis:  #i ncl ude <pt hread. h>

int pthread spin_destroy(pthread spinlock t *lock);
int pthread spin_init(pthread spinlock t *lock, int pshared);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_destroy() and pthread_spin_init() functions are moved from the
Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EBUSY] error for a locked spin lock object or an already initialized spin lock
object is removed; this condition results in undefined behavior.

pthread_spin_lock, pthread_spin_trylock

Purpose: Lock a spin lock object.

Synopsis:  #i ncl ude <pt hread. h>

int pthread _spin_|lock(pthread spinlock t *lock);
int pthread spin_trylock(pthread spinlock t *lock);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_lock() and pthread_spin_trylock() functions are moved from the
Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EDEADLK] error for a spin lock object for which the calling thread already
holds the lock is removed; this condition results in undefined behavior.
pthread_spin_unlock
Purpose: Unlock a spin lock object.
Synopsis:  #i ncl ude <pt hread. h>
i nt pthread_spin_unl ock(pthread_spinlock t *lock);
Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_unlock() function is moved from the Spin Locks option to the
Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EPERM] error for a spin lock object for which the current thread does not
hold the lock is removed; this condition results in undefined behavior.

A Source Book from The Open Group (2010)



System Interfaces Migration

ptsname
Purpose: Get name of the slave pseudo-terminal device.
XSl Synopsis:  #i ncl ude <stdlib. h>
char *ptsnane(int fil des);
Derivation: First released in Issue 4, Version 2.
Issue 7: No functional changes are made in this issue.
putc
Purpose: Put a byte on a stream.
Synopsis:  #i ncl ude <stdio. h>
int putc(int c, FILE *stream;
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
putchar
Purpose: Put a byte on a stdout stream.
Synopsis: ~ #i ncl ude <stdio. h>
int putchar(int c);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
putenv
Purpose: Change or add a value to an environment.
XSl Synopsis:  #i ncl ude <stdlib. h>
int putenv(char *string);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
putmsg, putpmsg
Purpose: Send a message on a STREAM (STREAMS).

OB XSR  Synopsis:

Derivation:

#i ncl ude <stropts. h>

int putnsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putpnsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags);

First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4

System Interfaces

139



System Interfaces System Interfaces Migration

Issue 7: The putmsg() and putpmsg () functions are marked obsolescent.
puts
Purpose: Put a string on standard output.

Synopsis:  #i ncl ude <stdio. h>
int puts(const char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.
putwc
Purpose: Put a wide character on a stream.

Synopsis:  #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

wint t putwc(wchar _t we, FILE *stream;

Derivation: First released as a World-wide Portability Interface in Issue 4.

Issue 7: No functional changes are made in this issue.
putwchar
Purpose: Put a wide character on a stdout stream.

Synopsis:  #i ncl ude <wchar. h>
Wi nt_t putwchar (wchar _t wc);
Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

qsort
Purpose: Sort a table of data.
Synopsis: ~ #i ncl ude <stdlib. h>

void qgsort(void *base, size t nel, size t width,
int (*conpar)(const void *, const void *));

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
raise
Purpose: Send a signal to the executing process.

Synopsis:  #i ncl ude <signal . h>
int raise(int sig);
Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: Functionality relating to the Threads option is moved to the Base.

140 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

OB CX

rand, rand_r, srand

Purpose:

Synopsis:

Derivation:

Issue 7:

pread, read
Purpose:

Synopsis:

Derivation:

Issue 7:

Pseudo-random number generator.
#i nclude <stdlib. h>

i nt rand(void);
int rand _r(unsigned *seed);
voi d srand(unsi gned seed);

First released in Issue 1. Derived from Issue 1 of the SVID.

The rand_r() function is marked obsolescent. Applications should use random ()
instead, or erand48(), nrand48(), or jrand48() when an independent random
number sequence in multiple threads is required.

Read from a file.
#i ncl ude <unistd. h>

ssize_t pread(int fildes, void *buf, size_t nbyte,
off t offset);
ssize_t read(int fildes, void *buf, size t nbyte);

First released in Issue 1. Derived from Issue 1 of the SVID.
The pread() function is moved from the XSI option to the Base.
Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

readdir, readdir_r

Purpose:

Synopsis:

Derivation:

Issue 7:

Read a directory.
#include <dirent. h>

struct dirent *readdir(DIR *dirp);

int readdir r(DIR *restrict dirp
struct dirent *restrict entry,
struct dirent **restrict result);

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #059 is applied, updating the ERRORS
section.

The readdir_r() function is moved from the Thread-Safe Functions option to the
Base.

Changes are made related to support for finegrained timestamps.

The value of the d_ino member is no longer unspecified for symbolic links.

The Authorized Guide to the Single UNIX Specification, Version 4 141



System Interfaces System Interfaces Migration

readlink, readlinkat
Purpose: Read the contents of a symbolic link relative to a directory file descriptor.
Synopsis:  #i ncl ude <uni std. h>

ssize_t readlink(const char *restrict path,
char *restrict buf, size t bufsize);

ssize_t readlinkat(int fd, const char *restrict path,
char *restrict buf, size t bufsize);

The readlinkat () function is equivalent to the readlink() function except in the case
where path specifies a relative path. In this case the symbolic link whose content is
read is relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the readlinkat () function is to read the content of symbolic links in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
readlink(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the readlinkat() function it can be guaranteed that the
symbolic link read is located relative to the desired directory.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The readlinkat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The [EACCES] error is removed from the “may fail” error conditions.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a

directory.
readv
Purpose: Read a vector.
XSl Synopsis:  #i ncl ude <sys/ ui o. h>

ssize t readv(int fildes, const struct iovec *iov,
int iovent);

Derivation: First released in Issue 4, Version 2.

Issue 7: Changes are made related to support for finegrained timestamps.

142 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

realloc
Purpose:

Synopsis:

Derivation:

Issue 7:

realpath
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

recv
Purpose:

Synopsis:

Derivation:

Issue 7:

recvfrom
Purpose:

Synopsis:

Derivation:

Issue 7:

Memory reallocator.

#i ncl ude <stdlib. h>

void *realloc(void *ptr, size t size);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Resolve a pathname.
#incl ude <stdlib. h>

char *real pat h(const char *restrict file_nane
char *restrict resol ved nane);

First released in Issue 4, Version 2.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

This function is updated for passing a null pointer for the resolved_name argument,
to request that it allocate memory for the generated pathname, as if by malloc(). If
resolved_name is not a null pointer and {PATH_MAX]} is not defined as a constant in
the <limits.h> header, the behavior is undefined.

Receive a message from a connected socket.
#i ncl ude <sys/socket. h>

ssize_t recv(int socket, void *buffer, size t |ength,
int flags);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

No functional changes are made in this issue.

Receive a message from a socket.
#i ncl ude <sys/socket. h>

ssize_t recvfron(int socket, void *restrict buffer
size_ t length, int flags,
struct sockaddr *restrict address,
socklen_t *restrict address_|en);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb).

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 143



System Interfaces System Interfaces Migration

144

recvmsg
Purpose: Receive a message from a socket.
Synopsis:  #i ncl ude <sys/socket. h>
ssize_t recvnsg(int socket, struct nsghdr *nessage, int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: No functional changes are made in this issue.

regcomp, regerror, regexec, regfree
Purpose: Regular expression matching.
Synopsis:  #i ncl ude <regex. h>

int regconp(regex_t *restrict preg,
const char *restrict pattern, int cflags);
size_ t regerror(int errcode, const regex_t *restrict preg,
char *restrict errbuf, size t errbuf_size);
i nt regexec(const regex_t *restrict preg,
const char *restrict string, size_t nmatch,
regmatch_t pmatch[restrict], int eflags);
void regfree(regex_t *preg);

Derivation: First released in Issue 4. Derived from the .

Issue 7: Austin Group Interpretation 1003.1-2001 #134 is applied, clarifying that if more
than one error occurs in processing a function call, any one of the possible
constants may be returned.

SD5-XBD-ERN-60 is applied, removing the requirement that the type regoff_t can
hold the largest value that can be stored in type off_t, and adding the requirement
that the type regoff_t can hold the largest value that can be stored in type
ptrdiff t.

remainder, remainderf, remainderl

Purpose: Remainder function.

Synopsis:  #i ncl ude <math. h>

doubl e renai nder (doubl e x, double y);
float remainderf(float x, float y);
| ong doubl e remai nderl (1 ong double x, |ong double y);

Derivation: First released in Issue 4, Version 2.

Issue 7: ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #55 (SD5-XSH-ERN-82) is
applied.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

CX

remove
Purpose:

Synopsis:

Derivation:

Issue 7:

Remove a file.
#i ncl ude <stdio. h>
i nt renove(const char *path);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1) and the IEEE Std 1003.1i-1995.

No functional changes are made in this issue.

remquo, remquof, remquol

Purpose:

Synopsis:

Derivation:

Issue 7:

Remainder functions.
#i ncl ude <mat h. h>

doubl e renquo(doubl e x, double y, int *quo);
float renguof(float x, float y, int *quo);
| ong doubl e remguol (1 ong doubl e x, |long double y, int *quo);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #56 (SD5-XSH-ERN-83) is
applied.

rename, renameat

Purpose:

Synopsis:

Derivation:

Rename file relative to directory file descriptor.
#incl ude <stdio. h>

i nt rename(const char *old, const char *new);
int renanmeat (i nt ol dfd, const char *old, int newfd,
const char *new;

The renameat () function is equivalent to the rename() function except in the case
where either old or new specifies a relative path. If old is a relative path, the file to
be renamed is located relative to the directory associated with the file descriptor
oldfd instead of the current working directory. If new is a relative path, the same
happens only relative to the directory associated with newfd. If the file descriptor
was opened without O_SEARCH, the function checks whether directory searches
are permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function does
not perform the check.

The purpose of the renameat () function is to rename files in directories other than
the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to rename(), resulting in
unspecified behavior. By opening file descriptors for the source and target
directories and using the renameat() function it can be guaranteed that that
renamed file is located correctly and the resulting file is in the desired directory.

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

The Authorized Guide to the Single UNIX Specification, Version 4 145



System Interfaces System Interfaces Migration

146

Issue 7: Austin Group Interpretation 1003.1-2001 #016 is applied, changing the definition of
the [ENOTDIR] error.

Austin Group Interpretation 1003.1-2001 #076 is applied, clarifying the behavior if
the final component of a path is either dot or dot-dot, and adding the associated
[EINVAL] error case.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

Austin Group Interpretation 1003.1-2001 #145 is applied, clarifying that the
[ENOENT] error condition also applies to the case in which a component of new
does not exist.

Austin  Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set on a directory.

The renameat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

rewind
Purpose: Reset the file position indicator in a stream.
Synopsis:  #i ncl ude <stdio. h>

void rewi nd(FI LE *stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
rewinddir
Purpose: Reset the position of a directory stream to the beginning of a directory.

Synopsis:  #i ncl ude <dirent. h>
void rewinddir(DIR *dirp);
Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

rint, rintf, rintl
Purpose: Round-to-nearest integral value.
Synopsis:  #i ncl ude <math. h>

doubl e rint(double x);
float rintf(float x);
| ong double rintl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

rmdir
Purpose: Remove a directory.
Synopsis:  #i ncl ude <uni std. h>
int rndir(const char *path);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

Austin  Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set.

Changes are made related to support for finegrained timestamps.

round, roundf, roundl
Purpose: Round to the nearest integer value in a floating-point format.
Synopsis:  #i ncl ude <math. h>

doubl e round(doubl e x);
float roundf(float Xx);
| ong doubl e roundl (1 ong doubl e x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl
Purpose: Compute exponent using FLT_RADIX.
Synopsis:  #i ncl ude <math. h>

doubl e scal bl n(double x, long n);

float scal blnf(float x, long n);

| ong doubl e scal bl nl (I ong double x, long n);
doubl e scal bn(double x, int n);

float scalbnf(float x, int n);

| ong doubl e scal bnl (1 ong double x, int n);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

sched_get_priority_max, sched_get_priority_min
Purpose: Get priority limits (REALTIME).
psiTps  Synopsis:  #i ncl ude <sched. h>
int sched_get _priority_max(int policy);
int sched_get priority_mn(int policy);
Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

The Authorized Guide to the Single UNIX Specification, Version 4 147



System Interfaces System Interfaces Migration

PS

PS

PSITPS

PS

148

Issue 7: No functional changes are made in this issue.

sched_getparam
Purpose: Get scheduling parameters (REALTIME).
Synopsis:  #i ncl ude <sched. h>

i nt sched_get paran(pid_t pid, struct sched_param *param ;

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_getscheduler
Purpose: Get scheduling policy (REALTIME).
Synopsis:  #i ncl ude <sched. h>

i nt sched_get schedul er(pid_t pid);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_rr_get_interval
Purpose: Get execution time limits (REALTIME).
Synopsis:  #i ncl ude <sched. h>

int sched_rr_get _interval (pid_t pid,
struct tinmespec *interval);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_setparam
Purpose: Set scheduling parameters (REALTIME).
Synopsis:  #i ncl ude <sched. h>

i nt sched_set paran(pid_t pid,
const struct sched_param *paran);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #061 is applied, clarifying the effect of
process scheduling on the scheduling of threads within the process.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

sched_setscheduler

Purpose:

PS Synopsis:

Derivation:

Issue 7:

sched_yield
Purpose:

Synopsis:

Derivation:

Issue 7:

seekdir

Purpose:

XSI Synopsis:

Derivation:

Issue 7:

sem_close
Purpose:

Synopsis:

Derivation:

Issue 7:

Set scheduling policy and parameters (REALTIME).
#i ncl ude <sched. h>

i nt sched_setscheduler(pid_t pid, int policy,
const struct sched_param *paran);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #061 is applied, clarifying the effect of
process scheduling on the scheduling of threads within the process.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

Yield the processor.
#i ncl ude <sched. h>
int sched_yield(void);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

SD5-XSH-ERN-120 is applied, adding APPLICATION USAGE.

The sched_yield () function is moved to the Base.

Set the position of a directory stream.
#incl ude <dirent.h>

voi d seekdir(DIR *dirp, long |oc);

First released in Issue 2.

SD5-XSH-ERN-200 is applied, updating the DESCRIPTION to note that the value
of loc should have been returned from an earlier call to telldir() using the same
directory stream.

Close a named semaphore.
#i ncl ude <semaphore. h>
int semclose(semt *sen);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The sem_close() function is moved from the Semaphores option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 149



System Interfaces System Interfaces Migration

sem_destroy
Purpose: Destroy an unnamed semaphore.
Synopsis:  #i ncl ude <semaphore. h>

int semdestroy(semt *sem;

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The sem_destroy () function is moved from the Semaphores option to the Base.

sem_getvalue
Purpose: Get the value of a semaphore.
Synopsis:  #i ncl ude <semaphore. h>
int semgetvalue(semt *restrict sem int *restrict sval);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.
Issue 7: The sem_getvalue() function is moved from the Semaphores option to the Base.
sem_init
Purpose: Initialize an unnamed semaphore.

Synopsis:  #i ncl ude <semaphore. h>
int seminit(semt *sem int pshared, unsigned val ue);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XSH-ERN-176 is applied.

The sem_init () function is moved from the Semaphores option to the Base.

sem_open
Purpose: Initialize and open a named semaphore.

Synopsis:  #i ncl ude <semaphore. h>

semt *sem open(const char *nane, int oflag, ...);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #066 is applied, updating the [ENOSPC]

error case and adding the [ENOMEM] error case.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and adding [ENAMETOOLONG] as a “may fail” error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the semaphore.

The sem_open () function is moved from the Semaphores option to the Base.

150 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

sem_post

Purpose: Unlock a semaphore.

Synopsis:  #i ncl ude <semaphore. h>
int sempost(semt *sem;

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The sem_post () function is moved from the Semaphores option to the Base.

sem_timedwait
Purpose: Lock a semaphore.

Synopsis:  #i ncl ude <semaphore. h>
#incl ude <tine. h>

int semtinedwait(semt *restrict sem
const struct timespec *restrict abstine);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.
Issue 7: The sem_timedwait () function is moved from the Semaphores option to the Base.
Functionality relating to the Timers option is moved to the Base.

An example is added.

sem_trywait, sem_wait
Purpose: Lock a semaphore.
Synopsis:  #i ncl ude <semaphore. h>

int semtrywait(semt *sem;
int semwait(semt *sem;

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XSH-ERN-54 is applied, removing the sem_wait() function from the “shall
fail” error cases.

The sem_trywait() and sem_wait() functions are moved from the Semaphores
option to the Base.

sem_unlink

Purpose: Remove a named semaphore.

Synopsis:  #i ncl ude <semaphore. h>
int semunlink(const char *nane);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin  Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a “shall fail” to a “may fail” error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

The Authorized Guide to the Single UNIX Specification, Version 4 151



System Interfaces System Interfaces Migration

The sem_unlink() function is moved from the Semaphores option to the Base.

semctl
Purpose: XSI semaphore control operations.
XSl Synopsis:  #i ncl ude <sys/sem h>

int senctl(int semd, int seormum int cnd, ...);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.
semget
Purpose: Get set of XSI semaphores.

XSl Synopsis:  #i ncl ude <sys/sem h>

i nt senget(key t key, int nsens, int senflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.
semop
Purpose: XSI semaphore operations.

XSl Synopsis:  #i ncl ude <sys/sem h>

int semop(int semid, struct sembuf *sops, size_t nsops);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: SD5-XSH-ERN-171 is applied, updating the DESCRIPTION to clarify the order in
which the operations in sops will be performed when there are multiple operations.

send

Purpose: Send a message on a socket.

Synopsis:  #i ncl ude <sys/socket. h>

ssize_t send(int socket, const void *buffer
size_t length, int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5

(XCU5).

Issue 7: Austin  Group Interpretation 1003.1-2001 #035 is applied, updating the
DESCRIPTION to clarify the behavior when the socket is a connectionless-mode
socket.

152 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

sendmsg
Purpose:

Synopsis:

Derivation:

Issue 7:

sendto
Purpose:

Synopsis:

Derivation:

Issue 7:

setbuf
Purpose:

Synopsis:

Derivation:

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

Send a message on a socket using a message structure.
#i ncl ude <sys/socket. h>

ssize_t sendnsg(int socket, const struct nsghdr *nessage,
int flags);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Austin Group Interpretation 1003.1-2001 #073 is applied, describing the allowed
behaviors when a peer address has been pre-specified.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

Send a message on a socket.
#i ncl ude <sys/socket. h>

ssize_t sendto(int socket, const void *nessage, size_t length,
int flags, const struct sockaddr *dest_ addr
socklen_t dest _len);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Austin Group Interpretations 1003.1-2001 #035 and #073 are applied, describing the
allowed behaviors when a peer address has been pre-specified.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

Assign buffering to a stream.
#i ncl ude <stdio. h>
void setbuf (FILE *restrict stream char *restrict buf);

First released in Issue 1. Derived from Issue 1 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4 153



System Interfaces

CX

154

Issue 7:

setegid
Purpose:

Synopsis:

Derivation:

Issue 7:

setenv
Purpose:

Synopsis:

Derivation:

Issue 7:

seteuid
Purpose:

Synopsis:

Derivation:

Issue 7:

setgid
Purpose:

Synopsis:

Derivation:

Issue 7:

setjmp
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

No functional changes are made in this issue.

Set the effective group ID.

#i ncl ude <uni std. h>

int setegid(gid_t gid);

First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

No functional changes are made in this issue.

Add or change environment variable.
#i nclude <stdlib. h>

i nt setenv(const char *envnane, const char *envval,
int overwite);

First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

No functional changes are made in this issue.

Set effective user ID.

#i ncl ude <uni std. h>

int seteuid(uid_t uid);

First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

No functional changes are made in this issue.

Set group ID.

#i ncl ude <uni std. h>

int setgid(gid t gid);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Set jump point for a non-local goto.

#i ncl ude <setjnp. h>

int setjnp(jnp_buf env);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

setkey
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

setlocale
Purpose:

Synopsis:

Derivation:

Issue 7:

setpgid
Purpose:

Synopsis:

Derivation:

Issue 7:

setpgrp
Purpose:

OB XsI  Synopsis:

Derivation:

Issue 7:

setregid
Purpose:

XSI Synopsis:

Derivation:

Set encoding key (CRYPT).
#i ncl ude <stdlib. h>

voi d set key(const char *key);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Set program locale.

#i ncl ude <l ocal e. h>

char *setlocal e(int category, const char *locale);
First released in Issue 3.

Functionality relating to the Threads option is moved to the Base.

Set process group ID for job control.
#i ncl ude <unistd. h>
int setpgid(pid_t pid, pid_t pgid);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

No functional changes are made in this issue.

Set the process group ID.
#i ncl ude <unistd. h>

pid_t setpgrp(void);

First released in Issue 4, Version 2.

The setpgrp () function is marked obsolescent. Applications should use sefpgid() or
setsid () as appropriate.

Set real and effective group IDs.
#i ncl ude <unistd. h>

int setregid(gid t rgid, gid t egid);

First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4 155



System Interfaces

X8I

156

Issue 7:

setreuid
Purpose:

Synopsis:

Derivation:

Issue 7:

setsid
Purpose:

Synopsis:

Derivation:

Issue 7:

setsockopt
Purpose:

Synopsis:

Derivation:

Issue 7:

setuid
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

SD5-XSH-ERN-177 is applied, adding the ability to set both the effective group ID
and saved set-group-ID to be the same as the real group ID.

Set real and effective user IDs.
#i ncl ude <uni std. h>

int setreuid(uid t ruid, uid_t euid);

First released in Issue 4, Version 2.

SD5-XSH-ERN-177 is applied, adding the ability to set both the effective user ID
and the saved set-user-ID to be the same as the real user ID.

Create session and set process group ID.
#i ncl ude <uni std. h>
pidt setsid(void);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

No functional changes are made in this issue.

Set the socket options.
#i ncl ude <sys/socket. h>

i nt setsockopt(int socket, int level, int option_nang,
const void *option_value, socklen_t option_|len);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to
socket options that is now in XSH Section 2.10.16 .

Set user ID.

#i ncl ude <uni std. h>

int setuid(uid_ t uid);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

setvbuf
Purpose: Assign buffering to a stream.
Synopsis:  #i ncl ude <stdio. h>

int setvbuf (FILE *restrict stream char *restrict buf,
int type, size_ t size);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

shm_open
Purpose: Open a shared memory object (REALTIME).
SHM Synopsis:  #i ncl ude <sys/mrman. h>

i nt shm open(const char *nane, int oflag, node_t nopde);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and changing [ENAMETOOLONG] from a “shall fail” to a “may fail”
error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the shared memory object.
shm_unlink
Purpose: Remove a shared memory object (REALTIME).
SHM Synopsis:  #i ncl ude <sys/mrman. h>

i nt shmunlink(const char *nane);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin  Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a “shall fail” to a “may fail” error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE

DIRECTIONS.
shmat
Purpose: XSI shared memory attach operation.
XSl Synopsis:  #i ncl ude <sys/shm h>

void *shmat (i nt shmid, const void *shmaddr, int shnflg);

The Authorized Guide to the Single UNIX Specification, Version 4 157



System Interfaces

Derivation:

Issue 7:

shmctl
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

shmdt
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

shmget
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

shutdown
Purpose:

Synopsis:

Derivation:

Issue 7:

158

First released in Issue 2. Derived from Issue 2

No functional changes are made in this issue.

XSI shared memory control operations.

#i ncl ude <sys/shm h>

System Interfaces Migration

of the SVID.

int shnectl (int shmd, int cnd, struct shmd _ds *buf);

First released in Issue 2. Derived from Issue 2

No functional changes are made in this issue.

XSI shared memory detach operation.
#i ncl ude <sys/shm h>

i nt shndt (const void *shmaddr);

First released in Issue 2. Derived from Issue 2

No functional changes are made in this issue.

Get an XSI shared memory segment.
#i ncl ude <sys/shm h>

i nt shnget (key_t key, size t size,

First released in Issue 2. Derived from Issue 2

No functional changes are made in this issue.

of the SVID.

of the SVID.

int shnflg);

of the SVID.

Shut down socket send and receive operations.

#i ncl ude <sys/socket. h>

i nt shutdown(int socket, int how);

First released in Issue 6. Derived from the Commands and Utilities, Issue 5

(XCUb).

No functional changes are made in this issue.

A Source Book from The Open Group (2010)



System Interfaces Migration

CX

CX

X8I

sigaction
Purpose:

Synopsis:

Derivation:

Issue 7:

sigaddset
Purpose:

Synopsis:

Derivation:

Issue 7:

sigaltstack
Purpose:

Synopsis:

Derivation:

System Interfaces

Examine and change a signal action.
#i ncl ude <si gnal . h>

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Austin Group Interpretation 1003.1-2001 #004 is applied, clarifying that the
sigaction () function may fail if the SA_SIGINFO flag is set in the sa_flags field of the
sigaction structure for a signal not in the range SIGRTMIN to SIGRTMAX.

Austin Group Interpretations 1003.1-2001 #065 and #084 are applied, clarifying the
role of the SA_NODEFER flag with respect to the signal mask, and clarifying the
SA_RESTART flag for interrupted functions which use timeouts.

SD5-XSH-ERN-167 is applied, updating the APPLICATION USAGE section to
explain that unless all signal handlers have errno set on return as it was on entry,
the value of errno is unspecified.

SD5-XSH-ERN-172 is applied, updating the DESCRIPTION to make optional the
requirement that when the SA_RESETHAND flag is set, sigaction () shall behave as
if the SA_NODEFER flag were also set.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

The description of the si_code member is replaced with a reference to XSH Section
243.

Add a signal to a signal set.
#i ncl ude <si gnal . h>

i nt sigaddset(sigset t *set, int signo);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

No functional changes are made in this issue.

Set and get signal alternate stack context.
#i ncl ude <si gnal . h>

int sigaltstack(const stack t *restrict ss,
stack t *restrict 0ss);

First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4 159



System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.
sigdelset
Purpose: Delete a signal from a signal set.

cx Synopsis:  #i ncl ude <si gnal . h>

i nt sigdel set(sigset t *set, int signo);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).
Issue 7: No functional changes are made in this issue.
sigemptyset
Purpose: Initialize and empty a signal set.
cx Synopsis:  #i ncl ude <si gnal . h>

int sigenptyset(sigset_t *set);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).
Issue 7: No functional changes are made in this issue.
sigfillset
Purpose: Initialize and fill a signal set.
cx Synopsis:  #i ncl ude <si gnal . h>

int sigfillset(sigset t *set);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

sighold, sigignore, sigpause, sigrelse, sigset
Purpose: Signal management.
oB xsI  Synopsis:  #i ncl ude <signal . h>
i nt sighold(int sig);
int sigignore(int sig);
i nt sigpause(int sig);

int sigrelse(int sig);
void (*sigset(int sig, void (*disp)(int)))(int);

Derivation: First released in Issue 4, Version 2.

Issue 7: These functions are marked obsolescent. Applications should use the sigaction()
function instead of the sigset() function, the pthread_sigmask() or sigprocmask()
functions instead of the sighold() and sigrelse() functions, and the sigsuspend()
function instead of the sigpause() function.

160 A Source Book from The Open Group (2010)



System Interfaces Migration

OB XSI

CX

CX

siginterrupt
Purpose:

Synopsis:

Derivation:

Issue 7:

sigismember
Purpose:

Synopsis:

Derivation:

Issue 7:

siglongjmp
Purpose:

Synopsis:

Derivation:

Issue 7:

signal
Purpose:

Synopsis:

Derivation:
Issue 7:
signbit
Purpose:

Synopsis:

Derivation:

Allow signals to interrupt functions.
#i ncl ude <si gnal . h>

int siginterrupt(int sig, int flag);

First released in Issue 4, Version 2.

System Interfaces

The siginterrupt() function is marked obsolescent. Applications should use

sigaction () with the SA_RESTART flag instead.

Test for a signal in a signal set.
#i ncl ude <si gnal . h>

i nt sigismenber(const sigset t *set, int signo);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).

No functional changes are made in this issue.

Non-local goto with signal handling.
#i ncl ude <setj np. h>
voi d si gl ongj np(si gj np_buf env, int val);

First released in Issue 3. Included for alignment with the .

No functional changes are made in this issue.

Signal management.

#i ncl ude <signal. h>

void (*signal (int sig, void (*func)(int)))(int);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Test sign.
#i ncl ude <mat h. h>

int signbit(real-floating x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

The Authorized Guide to the Single UNIX Specification, Version 4

161



System Interfaces

CX

CX

CX

CX

162

Issue 7:

sigpending
Purpose:

Synopsis:

Derivation:

Issue 7:

sigqueue
Purpose:

Synopsis:

Derivation:

Issue 7:

sigsetjmp
Purpose:

Synopsis:

Derivation:

Issue 7:

sigsuspend
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

No functional changes are made in this issue.

Examine pending signals.
#i ncl ude <si gnal . h>

i nt sigpending(sigset t *set);

First released in Issue 3.

No functional changes are made in this issue.

Queue a signal to a process.
#i ncl ude <si gnal . h>

int sigqueue(pid_t pid, int signo, const union sigval value);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

The sigqueune () function is moved from the Realtime Signals Extension option to the
Base.

Set jump point for a non-local goto.
#i ncl ude <setj np. h>

int sigsetjnp(sigjnmp_buf env, int savemask);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

No functional changes are made in this issue.

Wait for a signal.
#i ncl ude <si gnal . h>

i nt sigsuspend(const sigset_t *sigmask);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

SD5-XSH-ERN-122 is applied, adding the example code in the RATIONALE.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

CX

CX

sigtimedwait, sigwaitinfo

Purpose:

Synopsis:

Derivation:

Issue 7:

sigwait
Purpose:

Synopsis:

Derivation:

Issue 7:

sin, sinf, sinl

Purpose:

Synopsis:

Derivation:

Issue 7:

Wait for queued signals.
#i ncl ude <si gnal . h>

int sigtinmedwait(const sigset t *restrict set,
siginfo t *restrict info,
const struct timespec *restrict tineout);
int sigwaitinfo(const sigset t *restrict set,
siginfo t *restrict info);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

The sigtimedwait () and sigwaitinfo() functions are moved from the Realtime Signals
Extension option to the Base.

Wait for queued signals.
#i ncl ude <si gnal . h>

int sigwait(const sigset t *restrict set, int *restrict sig);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

Sine function.
#i ncl ude <mat h. h>

doubl e sin(double x);
float sinf(float x);
| ong doubl e sinl (long double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

sinh, sinhf, sinhl

Purpose:

Synopsis:

Derivation:

Issue 7:

Hyperbolic sine functions.
#i ncl ude <math. h>

doubl e si nh(double x);
float sinhf(float x);
| ong doubl e sinhl (I ong double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 163



System Interfaces

164

System Interfaces Migration

sleep
Purpose: Suspend execution for an interval of time.
Synopsis:  #i ncl ude <uni std. h>
unsi gned sl eep(unsi gned seconds);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
sockatmark
Purpose: Determine whether a socket is at the out-of-band mark.
Synopsis:  #i ncl ude <sys/socket. h>
int sockatmark(int s);
Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.
Issue 7: SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.
socket
Purpose: Create an endpoint for communication.
Synopsis:  #i ncl ude <sys/socket. h>
int socket(int domain, int type, int protocol);
Derivation: First released in Issue 6. Derived from the Commands and Ultilities, Issue 5
(XCUY).
Issue 7: No functional changes are made in this issue.
socketpair
Purpose: Create a pair of connected sockets.
Synopsis:  #i ncl ude <sys/socket. h>
i nt socketpair(int domain, int type, int protocol
i nt socket vector[2]);
Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUY).
Issue 7: The description of the [EMFILE] error condition is aligned with the pipe() function.
sqrt, sqrtf, sqrtl
Purpose: Square root function.
Synopsis:  #i ncl ude <math. h>
doubl e sqgrt(double x);
float sqrtf(float x);
| ong doubl e sqgrtl(long double x);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

stderr, stdin, stdout
Purpose: Standard I/O streams.
Synopsis:  #i ncl ude <stdio. h>
extern FILE *stderr, *stdin, *stdout;
Derivation: First released in Issue 1.

Issue 7: No functional changes are made in this issue.

strcasecmp, strcasecmp_l, strncasecmp, strncasecmp_l
Purpose: Case-insensitive string comparisons.
Synopsis:  #i ncl ude <strings. h>

i nt strcasecnp(const char *sl, const char *s2);
int strcasecnp_| (const char *sl1, const char *s2,
| ocale t locale);
i nt strncasecnp(const char *sl1l, const char *s2, size t n);
int strncasecnp_| (const char *sl, const char *s2,
size t n, locale t |ocale);

The strcasecmp_I() function compares, while ignoring differences in case, the string
pointed to by sl to the string pointed to by s2. The strncasecmp_I() function
compares, while ignoring differences in case, not more than # bytes from the string
pointed to by s1 to the string pointed to by s2.

These functions use the locale represented by locale to determine the case of the
characters. A handle for use as locale can be obtained using newlocale() or

duplocale().

Derivation: First released in Issue 4, Version 2.

Issue 7: The strcasecmp () and strncasecmp () functions are moved from the XSI option to the
Base.

The strcasecmnp_I() and strncasecnp_I() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 4.
strcat
Purpose: Concatenate two strings.
Synopsis:  #i ncl ude <string. h>
char *strcat(char *restrict sl1, const char *restrict s2);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 165



System Interfaces System Interfaces Migration

strchr
Purpose: String scanning operation.
Synopsis:  #i ncl ude <string. h>
char *strchr(const char *s, int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
strcmp
Purpose: Compare two strings.

Synopsis:  #i ncl ude <string. h>
int strcnp(const char *sl1, const char *s2);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strcoll, strcoll_1
Purpose: String comparison using collating information.
Synopsis:  #i ncl ude <string. h>

int strcoll(const char *sl, const char *s2);
&% int strcoll | (const char *sl1, const char *s2,
|l ocale t locale);

The strcoll_I () function compares the string pointed to by s1 to the string pointed to
by s2, both interpreted as appropriate to the LC_COLLATE category of the locale
represented by locale.

A handle for use as locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 3.

Issue 7: The strcoll_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

stpcpy, strcpy

Purpose: Copy a string and return a pointer to the end of the result.

Synopsis:  #i ncl ude <string. h>

o4 char *stpcpy(char *restrict sl1, const char *restrict s2);
char *strcpy(char *restrict sl1, const char *restrict s2);

The stpcpy () function is equivalent to the strcpy() function, except that it returns a
pointer to the terminating NUL character copied into the s1 buffer.

The following example constructs a multi-part message in a single buffer:

#i ncl ude <string. h>
#i ncl ude <stdio. h>

i nt
mai n (voi d)

166 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

{
char buffer [10];
char *nanme = buffer;
name = stpcpy (stpcpy (stpcpy (nane, "ice"),"-"), "creant);
puts (buffer);
return O;
}
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The stpcpy() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.
strespn
Purpose: Get the length of a complementary substring.

Synopsis:  #i ncl ude <string. h>
size_ t strcspn(const char *sl1l, const char *s2);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strdup, strndup
Purpose: Duplicate a specific number of bytes from a string.
cx Synopsis:  #i ncl ude <string. h>

char *strdup(const char *s);
char *strndup(const char *s, size_t size);

The strndup() function is equivalent to the strdup() function, duplicating the
provided s in a new block of memory allocated as if by using malloc(), with the
exception being that strndup() copies at most size plus one bytes into the newly
allocated memory, terminating the new string with a NUL character. If the length
of s is larger than size, only size bytes are duplicated. If size is larger than the length
of s, all bytes in s are copied into the new memory buffer, including the
terminating NUL character. The newly created string is always properly
terminated.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[ENOMEM] error to become a “shall fail” error.

The strdup () function is moved from the XSI option to the Base.

The strndup() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The APPLICATION USAGE section is updated to clarify that memory is allocated
as if by malloc().

The Authorized Guide to the Single UNIX Specification, Version 4 167



System Interfaces System Interfaces Migration

strerror, strerror_l, strerror_r
Purpose: Get error message string.
Synopsis:  #i ncl ude <string. h>

char *strerror(int errnum;
&% char *strerror_I(int errnum locale t |ocale);
int strerror_r(int errnum char *strerrbuf, size t buflen);

Derivation: First released in Issue 3.

Issue 7: Austin Group Interpretation 1003.1-2001 #187 is applied, clarifying the behavior
when the generated error message is an empty string.

SD5-XSH-ERN-191 is applied, disallowing perror() from overwriting the string
returned by strerror (), for alignment with the C Standard.

The strerror_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The strerror_r() function is moved from the Thread-Safe Functions option to the
Base.

strfmon, strfmon_1

Purpose: Convert monetary value to a string.

Synopsis:  #i ncl ude <nonetary. h>

ssize_t strfnon(char *restrict s, size t naxsize,

const char *restrict format, ...);
ssize_t strfnon_|(char *restrict s, size t nmaxsize,
| ocale_ t locale, const char *restrict format, ...);

The strfmon_I() function is equivalent to the strfmon() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.
Issue 7: SD5-XSH-ERN-29 is applied, updating the examples for % #5n and % (#5n.

SD5-XSH-ERN-233 is applied, changing the definition of the * + or ’ (’ flags to
refer to multiple locales.

The strfmon () function is moved from the XSI option to the Base.
The strfmon_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

strftime, strftime_1

Purpose: Convert date and time to a string.

Synopsis:  #i ncl ude <tine.h>

size t strftine(char *restrict s, size t naxsize,
const char *restrict fornmat,
const struct tm*restrict tinmeptr);
&% size t strftinme_|(char *restrict s, size t naxsize
const char *restrict fornmat,

168 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

const struct tm*restrict tinmeptr, locale_t |ocale);

First released in Issue 3.

Austin Group Interpretation 1003.1-2001 #163 is applied, making extensive
changes to the required behavior of the strftime() function, including the addition
of flags and field widths in conversion specifications.

The strftime_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

strlen, strnlen

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

strncat
Purpose:

Synopsis:

Derivation:

Issue 7:

strncmp
Purpose:

Synopsis:

Derivation:

Issue 7:

Get length of fixed size string.
#i ncl ude <string. h>

size_ t strlen(const char *s);
size t strnlen(const char *s, size t maxlen);

The strnlen() function computes the smaller of the number of bytes in the array to
which s points, not including the terminating NUL character, or the value of the
maxlen argument. The strnlen() function never examines more than maxlen bytes of
the array pointed to by s.

First released in Issue 1. Derived from Issue 1 of the SVID.

The strulen() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Concatenate a string with part of another.
#i ncl ude <string. h>

char *strncat (char *restrict sl1, const char *restrict s2,
size t n);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Compare part of two strings.

#i ncl ude <string. h>

int strncnp(const char *sl1, const char *s2, size t n);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 169



System Interfaces System Interfaces Migration

stpncpy, strncpy

Purpose: Copy fixed length string, returning a pointer to the array end.

Synopsis:  #i ncl ude <string. h>

X char *stpncpy(char *restrict sl1, const char *restrict s2,
size t n);

char *strncpy(char *restrict sl, const char *restrict s2,
size t n);

The stpncpy () function is equivalent to the strncpy() function, except for the return
value. If a NUL character is written to the destination, the stpncpy() function
returns the address of the first such NUL character. Otherwise, it returns &s1[n].

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The stpncpy () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

strpbrk

Purpose: Scan a string for a byte.

Synopsis:  #i ncl ude <string. h>
char *strpbrk(const char *sl, const char *s2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
strptime
Purpose: Date and time conversion.

XSl Synopsis:  #i ncl ude <tinme. h>

char *strptinme(const char *restrict buf,
const char *restrict fornmat,
struct tm*restrict tm;

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretations 1003.1-2001 #041 and #163 are applied, making
extensive changes to the required behavior of the strptime() function, including the
addition of flags and field widths in conversion specifications.

SD5-XSH-ERN-67 is applied, correcting the APPLICATION USAGE to remove the
impression that % is 4-digit years.

strrchr

Purpose: String scanning operation.

Synopsis:  #i ncl ude <string. h>
char *strrchr(const char *s, int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

170 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

strsignal
Purpose:

X Synopsis:

Derivation:

Issue 7:

strspn
Purpose:

Synopsis:

Derivation:

Issue 7:

strstr
Purpose:

Synopsis:

Derivation:

Issue 7:

No functional changes are made in this issue.

Get name of signal.
#i ncl ude <string. h>

char *strsignal (int signun);

The strsignal () function maps the signal number in signum to an implementation-
defined string and returns a pointer to it. It uses the same set of messages as the
psignal () function.

Application writers should note that if signum is not a valid signal number, some
implementations return NULL, while for others the strsignal() function returns a
pointer to a string containing an unspecified message denoting an unknown
signal. IEEE Std 1003.1-2001 leaves this return value unspecified.

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

First released in Issue 7.

Get length of a substring.

#i ncl ude <string. h>

size_ t strspn(const char *sl, const char *s2);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Find a substring.

#i ncl ude <string. h>

char *strstr(const char *sl1, const char *s2);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1b-1993.

No functional changes are made in this issue.

strtod, strtof, strtold

Purpose:

Synopsis:

Convert a string to a double-precision number.
#i nclude <stdlib. h>

doubl e strtod(const char *restrict nptr,
char **restrict endptr);

float strtof(const char *restrict nptr,
char **restrict endptr);

| ong doubl e strtold(const char *restrict nptr,
char **restrict endptr);

The Authorized Guide to the Single UNIX Specification, Version 4 171



System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strtoimax, strtoumax
Purpose: Convert string to integer type.
Synopsis:  #i ncl ude <inttypes. h>

intmax_t strtoi nax(const char *restrict nptr,
char **restrict endptr, int base);

uintmax_t strtounmax(const char *restrict nptr,
char **restrict endptr, int base);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

strtok, strtok_r
Purpose: Split string into tokens.
Synopsis:  #i ncl ude <string. h>

char *strtok(char *restrict sl1, const char *restrict s2);
o4 char *strtok_r(char *restrict s, const char *restrict sep
char **restrict lasts);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-235 is applied, correcting an example.
The strtok_r() function is moved from the Thread-Safe Functions option to the
Base.

strtol, strtoll

Purpose: Convert a string to a long integer.

Synopsis:  #i ncl ude <stdlib. h>

long strtol (const char *restrict str,
char **restrict endptr, int base);

long long strtoll (const char *restrict str,
char **restrict endptr, int base)

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strtoul, strtoull
Purpose: Convert a string to an unsigned long.
Synopsis:  #i ncl ude <stdlib. h>

unsi gned |l ong strtoul (const char *restrict str,
char **restrict endptr, int base);

unsi gned long long strtoull (const char *restrict str,
char **restrict endptr, int base);

172 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

No functional changes are made in this issue.

strxfrm, strxfrm_1

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

swab
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

String transformation.
#i ncl ude <string. h>

size_ t strxfrm(char *restrict sl1l, const char *restrict s2,
size t n);

size t strxfrml (char *restrict sl1l, const char *restrict s2,
size t n, locale t |ocale);

The strxfrm_I() function is equivalent to the strxfrm() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

First released in Issue 3. Included for alignment with the IEEE Std 1003.1i-1995.

The strxfrm_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Swap bytes.
#i ncl ude <uni std. h>

voi d swab(const void *restrict src, void *restrict dest,
ssi ze_t nbytes);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

symlink, symlinkat

Purpose:

Synopsis:

Make a symbolic link relative to directory file descriptor.
#i ncl ude <unistd. h>

int symink(const char *pathl, const char *path2);
int syminkat(const char *pathl, int fd, const char *path2);

The symlinkat () function is equivalent to the symlink() function except in the case
where path2 specifies a relative path. In this case the symbolic link is created
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the symlinkat() function is to create symbolic links in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to symlink(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and
using the symlinkat () function it can be guaranteed that the created symbolic link is

The Authorized Guide to the Single UNIX Specification, Version 4 173



System Interfaces System Interfaces Migration

located relative to the desired directory.
Derivation: First released in Issue 4, Version 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX].

The symlinkat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Additions have been made describing how symlink() sets the user and group IDs
and file mode of the symbolic link, and its effect on timestamps.

sync
Purpose: Schedule file system updates.
XSl Synopsis:  #i ncl ude <uni std. h>

voi d sync(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
sysconf
Purpose: Get configurable system variables.

Synopsis:  #i ncl ude <uni std. h>
| ong sysconf (int nane);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin  Group Interpretation 1003.1-2001 #160 is applied, clarifying the
requirements related to variables that have no limit.

SD5-XSH-ERN-166 is applied, changing “Maximum size” to “Initial size” for the
“Maximum size of ...” entries in the table in the DESCRIPTION.

The variables for the supported programming environments are updated to be V7
and the LEGACY variables are removed.

The following constants are added:

_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

The _XOPEN_UUCP variable and its associated _SC_XOPEN_UUCP value is
added to the table of system variables.

174 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

system
Purpose:

Synopsis:

Derivation:

Issue 7:

Issue a command.

#i ncl ude <stdlib. h>

i nt system{const char *command);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #055 is applied, clarifying the thread-
safety of this function and treatment of pthread_atfork() handlers.

tan, tanf, tanl

Purpose: Tangent function.
Synopsis:  #i ncl ude <math. h>
doubl e tan(doubl e x);
float tanf(float Xx);
| ong doubl e tanl (1 ong doubl e x);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
tanh, tanhf, tanhl
Purpose: Hyperbolic tangent functions.
Synopsis:  #i ncl ude <math. h>
doubl e tanh(doubl e x);
float tanhf(float x);
| ong doubl e tanhl (I ong doubl e x);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: No functional changes are made in this issue.
tedrain
Purpose: Wait for transmission of output.
Synopsis:  #i ncl ude <termi os. h>
int tcdrain(int fildes);
Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).
Issue 7: No functional changes are made in this issue.
tcflow
Purpose: Suspend or restart the transmission or reception of data.
Synopsis:  #i ncl ude <termi os. h>
int tcflow(int fildes, int action);
Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).

The Authorized Guide to the Single UNIX Specification, Version 4 175



System Interfaces System Interfaces Migration

176

Issue 7: SD5-XSH-ERN-190 is applied, clarifying in the DESCRIPTION the transmission of
START and STOP characters.

tcflush

Purpose: Flush non-transmitted output data, non-read input data, or both.

Synopsis:  #i ncl ude <termi os. h>
int tcflush(int fildes, int queue_sel ector);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).
Issue 7: No functional changes are made in this issue.
tcgetattr
Purpose: Get the parameters associated with the terminal.

Synopsis:  #i ncl ude <termi os. h>
int tcgetattr(int fildes, struct ternios *term os_p);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

tcgetpgrp
Purpose: Get the foreground process group ID.
Synopsis:  #i ncl ude <uni std. h>
pidt tcgetpgrp(int fildes);
Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988

(POSIX.1).
Issue 7: No functional changes are made in this issue.
tegetsid
Purpose: Get the process group ID for the session leader for the controlling terminal.

Synopsis:  #i ncl ude <termi os. h>
pidt tcgetsid(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: The tcgetsid() function is moved from the XSI option to the Base.
tcsendbreak
Purpose: Send a break for a specific duration.

Synopsis:  #i ncl ude <termi os. h>
int tcsendbreak(int fildes, int duration);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

tcsetattr
Purpose:

Synopsis:

Derivation:

Issue 7:

tcsetpgrp

Purpose:

Synopsis:

Derivation:

Issue 7:

No functional changes are made in this issue.

Set the parameters associated with the terminal.
#i ncl ude <termios. h>

int tcsetattr(int fildes, int optional _actions,
const struct termos *term os_p);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Austin Group Interpretation 1003.1-2001 #144 is applied, adding requirements
related to the new O_TTY_INIT flag.

Set the foreground process group ID.
#i ncl ude <unistd. h>
int tcsetpgrp(int fildes, pidt pgid_id);

First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

No functional changes are made in this issue.

tdelete, tfind, tsearch, twalk

Purpose:

XSI Synopsis:

Derivation:

Issue 7:

Manage a binary search tree.
#i ncl ude <search. h>

void *tdel ete(const void *restrict key, void **restrict rootp,
nt (*conpar) (const void *, const void *));
void *tfind(const void *key, void *const *rootp,
nt (*conpar) (const void *, const void *));
voi d *tsearch(const void *key, void **rootp
nt (*conpar)(const void *, const void *));
voi d twal k(const void *root,
void (*action)(const void *, VISIT, int));

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #149 is applied, clarifying concurrent use
of the tree in another thread.

Austin Group Interpretation 1003.1-2001 #151 is applied, clarifying behavior for
tdelete() when the deleted node is the root node.

Austin Group Interpretation 1003.1-2001 #153 is applied, clarifying that if the
functions pointed to by action or compar change the tree, the results are undefined.

The Authorized Guide to the Single UNIX Specification, Version 4 177



System Interfaces System Interfaces Migration

telldir
Purpose: Current location of a named directory stream.
XSl Synopsis:  #i ncl ude <dirent. h>

long telldir(DIR *dirp);

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
tempnam
Purpose: Create a name for a temporary file.

oB xsI  Synopsis:  #i ncl ude <stdi o. h>

char *tenpnan(const char *dir, const char *pfx);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The tempnam() function is marked obsolescent. Applications should use the
tmpfile(), mkdtemp (), or mkstemp () functions instead.

tgamma, tgammaf, tgammal

Purpose: Compute gamma () function.

Synopsis:  #i ncl ude <math. h>

doubl e t gamma(doubl e x);
float tgammaf(float x);
| ong doubl e tganmmual (|1 ong doubl e x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #52 (SD5-XSH-ERN-85) is
applied.

time

Purpose: Get time.

Synopsis:  #i ncl ude <tine.h>
tinme_t time(tine_t *tloc);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

timer_create
Purpose: Create a per-process timer.

cx Synopsis:  #i ncl ude <si gnal . h>
#i ncl ude <time. h>

int tinmer_create(clockid t clockid,
struct sigevent *restrict evp,
tinmer _t *restrict timerid);

178 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.
Issue 7: The timer_create() function is moved from the Timers option to the Base.
timer_delete
Purpose: Delete a per-process timer.
cx Synopsis:  #i ncl ude <tinme. h>

int tinmer_delete(tiner_t tinmerid);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The timer_delete() function is moved from the Timers option to the Base.

timer_getoverrun, timer_gettime, timer_settime
Purpose: Per-process timers.
cx Synopsis:  #i ncl ude <tinme. h>

int tinmer_getoverrun(tiner_t tinerid);
int timer_gettine(timer_t timerid, struct itinmerspec *val ue);
int tinmer_settine(tiner_t tinerid, int flags,

const struct itinmerspec *restrict val ue,

struct itinerspec *restrict oval ue);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The timer_getoverrun(), timer_gettime(), and timer_settime() functions are moved
from the Timers option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

times

Purpose: Get process and waited-for child process times.

Synopsis: ~ #i ncl ude <sys/tines. h>
clock t tinmes(struct tns *buffer);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 179



System Interfaces System Interfaces Migration

tmpfile
Purpose: Create a temporary file.
Synopsis:  #i ncl ude <stdio. h>
FILE *tnpfile(void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying that
implementations may restrict the permissions of the file created.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, adding the mandatory [EMFILE] error condition for
{STREAM_MAX] streams open.

tmpnam
Purpose: Create a name for a temporary file.
OB Synopsis:  #i ncl ude <stdi o. h>

char *tnpnam(char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
tmpnam () function need not be thread-safe if called with a NULL parameter.

The tmpnam() function is marked obsolescent. Applications should use the
tmpfile(), mkdtemp (), or mkstemp () functions instead.
toascii
Purpose: Translate an integer to a 7-bit ASCII character.
oB xsI  Synopsis:  #i ncl ude <ctype. h>

int toascii(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The toascii() function is marked obsolescent.

tolower, tolower _1
Purpose: Transliterate uppercase characters to lowercase.
Synopsis:  #i ncl ude <ctype. h>

int tolower(int c);
o4 int tolower |(int c, locale t |ocale);

The tolower_I() function is equivalent to the tolower() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

180 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

CX

CX

CX

Derivation:

Issue 7:

First released in Issue 1. Derived from Issue 1 of the SVID.

The tolower_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

toupper, toupper_1

Purpose:

Synopsis:

Derivation:

Issue 7:

Transliterate lowercase characters to uppercase.
#i ncl ude <ctype. h>

i nt toupper(int c);
int toupper_I(int ¢, locale_t |ocale);

The toupper_I() function is equivalent to the foupper() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The toupper_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

towctrans, towctrans_1

Purpose:

Synopsis:

Derivation:

Issue 7:

Wide-character transliteration.
#i ncl ude <wctype. h>

wint t towtrans(wint_t we, wctrans_t desc);
wint t towtrans | (wint t w, wetrans_t desc,
|l ocale t locale);

The towctrans_I() function is equivalent to the towctrans() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

First released in Issue 5. Derived from .

The towctrans_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

towlower, towlower_1

Purpose:

Synopsis:

Derivation:

Transliterate uppercase wide-character code to lowercase.
#i ncl ude <wctype. h>

wint t towower(wint t wc);
wint t towmower | (wint t wec, locale t |ocale);

The towlower_I() function is equivalent to the towlower() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

First released in Issue 4.

The Authorized Guide to the Single UNIX Specification, Version 4 181



System Interfaces System Interfaces Migration

Issue 7: The towlower_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

towupper, towupper_l1

Purpose: Transliterate lowercase wide-character code to uppercase.

Synopsis:  #i ncl ude <wctype. h>

Wi nt_t towupper(wint_t wc);
o4 wint_t towupper_|(wint_t w, locale t |ocale);

The towupper_I() function is equivalent to the towupper() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The towupper_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

trung, truncf, truncl

Purpose: Round to truncated integer value.

Synopsis:  #i ncl ude <math. h>

doubl e trunc(double x);
float truncf(float Xx);
| ong doubl e truncl (1 ong double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
truncate
Purpose: Truncate a file to a specified length.

Synopsis:  #i ncl ude <uni std. h>
int truncate(const char *path, off _t Ilength);
Derivation: First released in Issue 4, Version 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The truncate() function is moved from the XSI option to the Base.
Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

182 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

ttyname, ttyname_r

Purpose:

Synopsis:

Derivation:

Issue 7:

Find the pathname of a terminal.
#i ncl ude <unistd. h>

char *ttynanme(int fildes);
int ttyname_r(int fildes, char *name, size_t nanesize);

First released in Issue 1. Derived from Issue 1 of the SVID.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

The ttyname_r() function is moved from the Thread-Safe Functions option to the
Base.

daylight, timezone, tzname, tzset

Purpose:
Synopsis:

X8I

CX

Derivation:
Issue 7:
ulimit
Purpose:

OB XSl  Synopsis:

Derivation:

Issue 7:

umask
Purpose:

Synopsis:

Derivation:

Issue 7:

Set timezone conversion information.
#i ncl ude <tine. h>

extern int daylight;
extern |l ong tinezone;
extern char *tznang[ 2] ;
void tzset (void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get and set process limits.
#include <ulimt.h>

long ulimt(int cnd, ...);

First released in Issue 1. Derived from Issue 1 of the SVID.

The wulimit() function is marked obsolescent. Applications should use the
getrlimit () or setrlimit () functions instead.

Set and get the file mode creation mask.

#i ncl ude <sys/stat. h>

node_t umask(node t cnask);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 183



System Interfaces System Interfaces Migration

uname
Purpose: Get the name of the current system.
Synopsis:  #i ncl ude <sys/ut snane. h>

i nt unane(struct utsnane *nane);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
ungetc
Purpose: Push byte back into input stream.

Synopsis:  #i ncl ude <stdio. h>
int ungetc(int c, FILE *stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
ungetwc
Purpose: Push wide-character code back into the input stream.

Synopsis:  #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

wint _t ungetwc(wint_t we, FILE *strean);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

unlink, unlinkat
Purpose: Remove a directory entry relative to directory file descriptor.
Synopsis:  #i ncl ude <uni std. h>

i nt unlink(const char *path);
int unlinkat(int fd, const char *path, int flag);

The unlinkat () function is equivalent to the unlink() or rmdir() function except in
the case where path specifies a relative path. In this case the directory entry to be
removed is determined relative to the directory associated with the file descriptor
fd instead of the current working directory. If the file descriptor was opened
without O_SEARCH], the function checks whether directory searches are permitted
using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function does not perform the
check.

The AT_REMOVEDIR flag controls whether unlinkat() behaves like unlink() or
rmdir(): if AT_REMOVEDIR is set, the directory entry specified by fd and path is
removed as a directory.

The purpose of the unlinkat () function is to remove directory entries in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to unlink(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and

184 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation:

Issue 7:

unlockpt
Purpose:

XSI Synopsis:

Derivation:

Issue 7:

unsetenv
Purpose:

Cx Synopsis:

Derivation:

Issue 7:

uselocale
Purpose:

Cx Synopsis:

using the unlinkat () function it can be guaranteed that the removed directory entry
is located relative to the desired directory.

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

Austin  Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set on a directory.

Text arising from the LSB Conflicts TR is added to the RATIONALE about the use
of [EPERM] and [EISDIR].

The unlinkat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Unlock a pseudo-terminal master/slave pair.
#incl ude <stdlib. h>
int unl ockpt(int fildes);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Remove an environment variable.
#i ncl ude <stdlib. h>

i nt unsetenv(const char *nane);

First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

No functional changes are made in this issue.

Use locale in current thread.
#i ncl ude <l ocal e. h>

| ocal e t usel ocal e(l ocal e t new oc);

The uselocale() function sets the current locale for the current thread to the locale
represented by newloc.

Application writers should note that unlike the setlocale() function, the uselocale()
function does not allow replacing some locale categories only. Applications that
need to install a locale which differs only in a few categories must use newlocale()

The Authorized Guide to the Single UNIX Specification, Version 4 185



System Interfaces

Derivation:

Issue 7:

utime
Purpose:

OB Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

to change a locale object equivalent to the currently used locale and install it.

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

First released in Issue 7.

Set file access and modification times.
#i ncl ude <uti nme. h>

int utine(const char *path, const struct utinbuf *tinmes);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin  Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX]}.

The utime() function is marked obsolescent. Applications should use the
utimensat () function instead.

Changes are made related to support for finegrained timestamps.

vdprintf, viprintf, vprintf, vsnprintf, vsprintf

Purpose:

Synopsis:
cx

Derivation:

Issue 7:
186

Format output of a stdarg argument list.

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

int vdprintf(int fildes, const char *restrict fornmat,
va_list ap);

int viprintf(FILE *restrict stream
const char *restrict format, va list ap);

int vprintf(const char *restrict fornmat, va list ap);

int vsnprintf(char *restrict s, size t n
const char *restrict format, va list ap);

int vsprintf(char *restrict s, const char *restrict fornat,
va_list ap);

The wvdprintf() function is equivalent to the ufprintf() function, except that
vdprintf() writes output to the file associated with the file descriptor specified by
the fildes argument rather than placing output on a stream.

First released in Issue 1. Derived from Issue 1 of the SVID.

The vdprintf() function is added to complement the dprintf() function from The
Open Group Technical Standard, 2006, Extended API Set Part 1.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

vfscanf, vscanf, vsscanf
Purpose: Format input of a stdarg argument list.

Synopsis:  #i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

int vifscanf(FILE *restrict stream const char *restrict format,
va_list arg);

i nt vscanf(const char *restrict format, va list arg);

i nt vsscanf(const char *restrict s, const char *restrict fornat,
va_list arg);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

viwprintf, vswprintf, vwprintf
Purpose: Wide-character formatted output of a stdarg argument list.

Synopsis:  #i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int viwprintf(FILE *restrict stream
const wchar_t *restrict format, va list arg);
int vswprintf(wchar t *restrict ws, size t n
const wchar _t *restrict format, va list arg);
int vwprintf(const wchar t *restrict format, va_ list arg);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

viwscanf, vswscanf, vwscanf
Purpose: Wide-character formatted input of a stdarg argument list.

Synopsis:  #i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int viwscanf(FILE *restrict stream
const wchar_t *restrict format, va list arg);
i nt vswscanf(const wchar t *restrict ws,
const wchar_t *restrict format, va list arg);
i nt vwscanf(const wchar _t *restrict format, va list arg);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 187



System Interfaces System Interfaces Migration

wait, waitpid
Purpose: Wait for a child process to stop or terminate.
Synopsis:  #i ncl ude <sys/wait. h>

pidt wait(int *stat_|oc);
pidt waitpid(pid t pid, int *stat _loc, int options);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: APPLICATION USAGE is added, recommending that the wait() function not be
used and that the waitpid () function not be used with a pid argument of -1.

An additional example for waitpid() is added.
waitid
Purpose: Wait for a child process to change state.
Synopsis:  #i ncl ude <sys/wait. h>

int waitid(idtype t idtype, idt id, siginfo t *infop
i nt options);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin  Group Interpretation 1003.1-2001 #060 is applied, updating the
DESCRIPTION to require that applications set at least one of the flags WEXITED,
WSTOPPED or WCONTINUED in the options argument.

The waitid () function is moved from the XSI option to the Base.

APPLICATION USAGE is added, recommending that the waitid() function not be
used with idtype equal to P_ALL.

The description of the WNOHANG flag is updated to match the one on the
<sys/wait.h> page.

wcrtomb

Purpose: Convert a wide-character code to a character (restartable).

Synopsis:  #i ncl ude <stdio. h>

size t wertonb(char *restrict s, wchar_t wc,
nbstate t *restrict ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
wertomb () function need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

188 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

wcescasecmp, wcscasecmp_l, wcesncasecmp, wcsncasecmp_l

Purpose:

Cx Synopsis:

Derivation:

Issue 7:

wcescat
Purpose:

Synopsis:

Derivation:

Issue 7:

wcschr
Purpose:

Synopsis:

Derivation:

Issue 7:

Case-insensitive wide-character string comparison.
#i ncl ude <wchar. h>

i nt wcscasecnp(const wchar_t *wsl, const wchar_t *ws2);

i nt wcscasecnp_| (const wchar _t *wsl, const wchar t *ws2,
| ocale t locale);

i nt wesncasecnp(const wchar_t *wsl1l, const wchar_t *ws2,
size t n);

i nt wesncasecnp_I| (const wchar _t *wsl, const wchar_t *ws2,
size t n, locale t |ocale);

The wescasecmp () and wesncasecmp () functions are the wide-character equivalent of
the strcasecmp () and strncasecmp () functions, respectively.

The wcscasecmp() and  wcescasecmp_I() functions compare, while ignoring
differences in case, the wide-character string pointed to by wsl to the wide-
character string pointed to by ws2.

The wcsncasecmp() and wcesncasecmp_I() functions compare, while ignoring
differences in case, not more than n wide-characters from the wide-character string
pointed to by ws1 to the wide-character string pointed to by ws2.

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

First released in Issue 7.

Concatenate two wide-character strings.
#i ncl ude <wchar. h>

wchar t *wcscat (wchar _t *restrict wsl,
const wchar _t *restrict ws2);

First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

Wide-character string scanning operation.

#i ncl ude <wchar. h>

wchar _t *wcschr(const wchar _t *ws, wchar _t wc);
First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 189



System Interfaces System Interfaces Migration

wesemp
Purpose: Compare two wide-character strings.
Synopsis:  #i ncl ude <wchar. h>

i nt wescnp(const wchar _t *wsl, const wchar _t *ws2);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcscoll, wescoll_1
Purpose: Wide-character string comparison using collating information.
Synopsis:  #i ncl ude <wchar. h>

i nt wescol | (const wchar _t *ws1, const wchar_t *ws2);
o4 int wescoll | (const wchar _t *wsl, const wchar t *ws2,
|l ocale t locale);

The wescoll_I() function compares the wide-character string pointed to by ws1 to
the wide-character string pointed to by ws2, both interpreted as appropriate to the
LC_COLLATE category of the locale represented by locale.

A handle for use as locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wescoll_I () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Wcpcpy, Wescpy

Purpose: Copy a wide-character string, returning a pointer to its end.

Synopsis:  #i ncl ude <wchar. h>

&% wchar _t *wcpcpy(wechar _t *restrict wsl,
const wchar _t *restrict ws2);

wchar _t *wcscpy(wchar _t *restrict wsl,
const wchar _t *restrict ws2);

The wepcepy () function is equivalent to the wescpy () function, except that it returns
a pointer to the terminating null wide-character code copied into the ws1 buffer.

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wepepy () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

wesespn

Purpose: Get the length of a complementary wide substring.

Synopsis:  #i ncl ude <wchar. h>
size_t wescspn(const wchar _t *wsl, const wchar _t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

190 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Issue 7:

wcesdup
Purpose:

X Synopsis:

Derivation:

Issue 7:

wcsftime
Purpose:

Synopsis:

Derivation:

Issue 7:

No functional changes are made in this issue.

Duplicate a wide-character string.
#i ncl ude <wchar. h>

wchar _t *wcsdup(const wchar _t *string);

The wesdup () function is the wide-character equivalent of the strdup () function.

Application writers should note that for functions that allocate memory as if by
malloc(), (such as wesdup()) the application should release such memory when it is
no longer required by a call to free(). For wcsdup(), this is the return value.

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

First released in Issue 7.

Convert date and time to a wide-character string.
#i ncl ude <wchar. h>

size t wesftinme(wchar _t *restrict wes, size t naxsize,
const wchar_t *restrict format,
const struct tm*restrict tinmeptr);

First released in Issue 4.

No functional changes are made in this issue.

wcslen, wesnlen

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Get length of a fixed-sized wide-character string.
#i ncl ude <wchar. h>

size_t weslen(const wchar _t *ws);
size_t wesnl en(const wechar _t *ws, size t maxlen);

The wcsnlen () function computes the smaller of the number of wide characters in
the string to which ws points, not including the terminating null wide-character
code, and the value of maxlen. The wcsnlen() function never examines more than
the first maxlen characters of the wide-character string pointed to by ws.

First released in Issue 4. Derived from the MSE working draft.

The wesnlen() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The Authorized Guide to the Single UNIX Specification, Version 4 191



System Interfaces System Interfaces Migration

wcsncat
Purpose: Concatenate a wide-character string with part of another.
Synopsis:  #i ncl ude <wchar. h>

wchar _t *wcsncat (wchar _t *restrict wsl,
const wchar _t *restrict ws2, size t n);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.
wesnemp
Purpose: Compare part of two wide-character strings.

Synopsis:  #i ncl ude <wchar. h>
i nt wesncnp(const wchar _t *wsl1l, const wchar_t *ws2, size t n);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcpncpy, wesnepy
Purpose: Copy a fixed-size wide-character string, returning a pointer to its end.
Synopsis:  #i ncl ude <wchar. h>

o4 wchar _t *wcpncpy(wchar _t restrict *wsl,
const wchar _t *restrict ws2, size t n);

wchar _t *wcsncpy(wchar _t *restrict wsl,
const wchar _t *restrict ws2, size_ t n);

The wepnepy() function is equivalent to the wesncpy() function, except for the
return value. If any null wide-character codes were written into the destination,
the wepnepy () function returns the address of the first such null wide-character
code. Otherwise, it returns &ws1[n].

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wepnepy () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

wcespbrk

Purpose: Scan a wide-character string for a wide-character code.

Synopsis:  #i ncl ude <wchar. h>
wchar _t *wcspbrk(const wchar _t *wsl, const wchar _t *ws2);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

192 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

wesrchr
Purpose: Wide-character string scanning operation.
Synopsis:  #i ncl ude <wchar. h>
wchar _t *wcsrchr(const wchar _t *ws, wchar_t wc);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcesnrtombs, wesrtombs
Purpose: Convert a wide-character string to a character string (restartable).
Synopsis:  #i ncl ude <wchar. h>

o4 size t wesnrtonbs(char *restrict dst,
const wchar_t **restrict src, size t nwec,
size t len, nbstate_t *restrict ps);
size_t wesrtonbs(char *restrict dst,
const wchar _t **restrict src, size_t len
nbstate t *restrict ps);

The wesnrtombs () function is equivalent to the wesrtombs () function, except that the
conversion is limited to the first nwc wide characters.

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
wesrtombs () function need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

The wcnsrtombs() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

wcesspn

Purpose: Get the length of a wide substring.

Synopsis:  #i ncl ude <wchar. h>
size_t wesspn(const wchar _t *ws1l, const wchar_t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.
wcsstr
Purpose: Find a wide-character substring.

Synopsis:  #i ncl ude <wchar. h>

wchar _t *wcsstr(const wchar t *restrict wsl,
const wchar _t *restrict ws2);

Derivation: First released in Issue 5. Included for alignment with .

The Authorized Guide to the Single UNIX Specification, Version 4 193



System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

wcstod, westof, westold
Purpose: Convert a wide-character string to a double-precision number.
Synopsis:  #i ncl ude <wchar. h>

doubl e westod(const wchar _t *restrict nptr,
wchar _t **restrict endptr);

float westof (const wchar _t *restrict nptr,
wchar _t **restrict endptr);

| ong doubl e westol d(const wchar _t *restrict nptr,
wchar _t **restrict endptr);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcestoimax, westoumax
Purpose: Convert a wide-character string to an integer type.

Synopsis:  #i ncl ude <stddef. h>
#i ncl ude <inttypes. h>

i nt max_t wcstoi nax(const wchar _t *restrict nptr,
wchar t **restrict endptr, int base);

ui nt max_t wecst ounmax(const wchar t *restrict nptr,
wchar t **restrict endptr, int base);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
westok
Purpose: Split a wide-character string into tokens.

Synopsis:  #i ncl ude <wchar. h>

wchar _t *wcstok(wchar _t *restrict wsl,
const wchar _t *restrict ws2,
wchar _t **restrict ptr);

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

wcstol, westoll
Purpose: Convert a wide-character string to a long integer.
Synopsis:  #i ncl ude <wchar. h>

| ong westol (const wchar _t *restrict nptr,
wchar t **restrict endptr, int base);

long long westoll (const wchar _t *restrict nptr,
wchar t **restrict endptr, int base);

194 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.
wcstombs
Purpose: Convert a wide-character string to a character string.

Synopsis: ~ #i ncl ude <stdlib. h>

size_t wcstonbs(char *restrict s,
const wchar _t *restrict pwes, size t n);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a “may fail” to a “shall fail”.

wcstoul, westoull

Purpose: Convert a wide-character string to an unsigned long.

Synopsis:  #i ncl ude <wchar. h>

unsi gned | ong westoul (const wchar _t *restrict nptr,
wchar t **restrict endptr, int base);

unsi gned |l ong |l ong westoul | (const wchar _t *restrict nptr,
wchar t **restrict endptr, int base);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

weswidth

Purpose: Number of column positions of a wide-character string.
XSl Synopsis:  #i ncl ude <wchar. h>

i nt weswi dt h(const wchar _t *pwes, size t n);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wesxfrm, wesxfrm_1
Purpose: Wide-character string transformation.
Synopsis:  #i ncl ude <wchar. h>

size t wesxfrmwechar _t *restrict wsl,
const wchar _t *restrict ws2, size t n);
&% size t wesxfrml (wchar _t *restrict wsi,
const wchar _t *restrict ws2, size t n,
|l ocale t locale);

The wesxfrm_I() function is equivalent to the wcsxfrm() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

The Authorized Guide to the Single UNIX Specification, Version 4 195



System Interfaces System Interfaces Migration

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wesxfrm_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

wctob

Purpose: Wide-character to single-byte conversion.

Synopsis:  #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

int wetob(wint_t c);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.
wctomb
Purpose: Convert a wide-character code to a character.

Synopsis:  #i ncl ude <stdlib. h>
int wetonb(char *s, wchar_t wchar);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, adding the [EILSEQ]
error condition.

wctrans, wctrans_1

Purpose: Define character mapping.

Synopsis: ~ #i ncl ude <wctype. h>

wctrans_t wetrans(const char *charcl ass);
&% wctrans_t wetrans | (const char *charclass, locale t |ocale);

The wctrans_I() function is equivalent to the wctrans() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 5. Derived from .

Issue 7: The wctrans_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

wctype, wetype_l

Purpose: Define character class.

Synopsis:  #i ncl ude <wctype. h>

wctype_t wetype(const char *property);
&% wetype t wetype | (const char *property, locale_ t |ocale);

The wctype_I() function is equivalent to the wctype() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

196 A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

Derivation: First released in Issue 4.

Issue 7: The wctype_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.
wcwidth
Purpose: Number of column positions of a wide-character code.
XSl Synopsis:  #i ncl ude <wchar. h>

i nt wewi dt h(wchar _t wc);

Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the

MSE working draft.
Issue 7: No functional changes are made in this issue.
wmemchr
Purpose: Find a wide character in memory.

Synopsis:  #i ncl ude <wchar. h>
wchar _t *wnencthr(const wchar _t *ws, wchar_t we, size t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.
wmememp
Purpose: Compare wide characters in memory.

Synopsis:  #i ncl ude <wchar. h>
i nt wnencnp(const wchar _t *wsl1l, const wchar_t *ws2, size t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.
wmemcpy
Purpose: Copy wide characters in memory.

Synopsis:  #i ncl ude <wchar. h>

wchar _t *wnencpy(wchar _t *restrict wsl,
const wchar _t *restrict ws2, size t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 197



System Interfaces System Interfaces Migration

198

wmemmove
Purpose: Copy wide characters in memory with overlapping areas.
Synopsis:  #i ncl ude <wchar. h>

wchar _t *wnemmove(wchar _t *wsl, const wchar _t *ws2, size t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.
wmemset
Purpose: Set wide characters in memory.

Synopsis:  #i ncl ude <wchar. h>
wchar _t *wnenset (wchar _t *ws, wchar t we, size t n);
Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

wordexp, wordfree
Purpose: Perform word expansions.
Synopsis:  #i ncl ude <wor dexp. h>

i nt wordexp(const char *restrict words,
wordexp_ t *restrict pwordexp, int flags);
voi d wordfree(wordexp_t *pwordexp);

Derivation: First released in Issue 4. Derived from the .

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, adding APPLICATION
USAGE explaining that the wordexp () function need not be thread safe if passed an
expression referencing an environment variable while any other thread is
concurrently modifying any environment variable.

pwrite, write

Purpose: Write on a file.

Synopsis:  #i ncl ude <uni std. h>

ssize t pwite(int fildes, const void *buf, size t nbyte,
off t offset);
ssize t wite(int fildes, const void *buf, size t nbyte);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The pwrite() function is moved from the XSI option to the Base.
Functionality relating to the XSI STREAMS option is marked obsolescent.

SD5-XSH-ERN-160 is applied, updating the DESCRIPTION to clarify the
requirements for the pwrite() function, and to change the use of the phrase “file
pointer” to “file offset”.

A Source Book from The Open Group (2010)



System Interfaces Migration System Interfaces

writev
Purpose: Write a vector.
XSl Synopsis:  #i ncl ude <sys/ ui o. h>

ssize t witev(int fildes, const struct iovec *iov,
int iovent);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
y0,y1, yn
Purpose: Bessel functions of the second kind.

XSl Synopsis:  #i ncl ude <mat h. h>

doubl e yO(doubl e Xx);
doubl e y1(doubl e x);
doubl e yn(int n, double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 199



System Interfaces Migration

200 A Source Book from The Open Group (2010)



Chapter 12

Utilities Migration

12.1 Introduction

This chapter contains a section for each utility interface defined in XCU, Issue 7. Each section
contains the SYNOPSIS and gives the derivation of the interface. Where new option letters have
been added in Issue 7, a brief description is included, complete with examples where
appropriate. For interfaces carried forward from Issue 6, syntax and semantic changes made to
the interface in Issue 7 are identified (if any). Only changes that might affect an application
programmer are included.

12.2  Utilities
admin
Purpose:

XsI Synopsis:

Derivation:

Issue 7:

alias
Purpose:

Synopsis:

Derivation:

Issue 7:

Create and administer SCCS files (DEVELOPMENT).

admin —-i[nane] [-n] [-a login] [-d flag] [-e login] [-f flag]
[F-mnrlist] [-r rel] [-t[nane] [-y[conment]] newfile

admin -n [-a login] [-d flag] [-e login] [-f flag] [-mnrlist]
[-t[nane]] [-y[coment]] newfile...

admin [-a login] [-d flag] [-mnrlist] [-r rel]
[-t[nane]] file...

admn -h file...

admn -z file...

First released in Issue 2.

No functional changes are made in this issue.

Define or display aliases.
alias [alias-name[=string]...]
First released in Issue 4.

The alias utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The first example is changed to remove the creation of an alias for a standard
utility that alters its behavior to be non-conforming.

The Authorized Guide to the Single UNIX Specification, Version 4 201



Utilities Utilities Migration

ar
Purpose: Create and maintain library archives.

SD Synopsis: ar -d [-v] archive file...

XSI ar -m[-v] archive file...
ar -m-a [-v] posnane archive file...
ar -m-b [-v] posnane archive file...
ar -m-i [-v] posnane archive file...

XSI ar -p [—v] [=s] archive [file...]

XSI ar —q [-cv] archive file...
ar —r [—-cuv] archive file...

XSI ar -r —-a [-cuv] posnane archive file...
ar -r -b [-cuv] posnane archive file...
ar -r -i [-cuv] posnane archive file...

XSI ar -t [-v] [=s] archive [file...]

XSI ar —x [—-v] [-sCT] archive [file...]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

asa
Purpose: Interpret carriage-control characters.
FR Synopsis: asa [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

at

Purpose: Execute commands at a later time.

Synopsis: at [-n] [f file] [—-q queuenane] -t tine_arg
at [-m] [-f file] [-g queuenane] tinespec...
at —-r at_job_ id...
at -1 -g queuenane
at -l [at _job_id...]

Derivation: First released in Issue 2.

202 A Source Book from The Open Group (2010)



Utilities Migration

Issue 7:

awk
Purpose:

Synopsis:

Derivation:

Issue 7:

basename
Purpose:
Synopsis:
Derivation:

Issue 7:

batch
Purpose:
Synopsis:
Derivation:

Issue 7:

bc
Purpose:
Synopsis:
Derivation:

Issue 7:

The Authorized Guide to the Single UNIX Specification, Version 4

Utilities

The at utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the at utility.

Pattern scanning and processing language.
awk [-F ERE] [-v assignnent]...

awk [-F ERE] —f progfile [-f progfile]...
[argunent...]

program [argunent...]

[-v assignnent]...

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #189 is applied, changing the EXTENDED
DESCRIPTION to make the support of hexadecimal integer and floating constants
optional.

Austin  Group Interpretation 1003.1-2001 #201 is

implementations to support infinities and NaNs.

SD5-XCU-ERN-79 is applied, restoring the horizontal lines to XCU Table 4-1,
Expressions in Decreasing Precedence in awk, and SD5-XCU-ERN-80 is applied,
changing the order of some table entries.

applied, permitting

Return non-directory portion of a pathname.
basenane string [suffix]
First released in Issue 2.

No functional changes are made in this issue.

Schedule commands to be executed in a batch queue.
bat ch
First released in Issue 2.

The batch utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the batch utility.

Arbitrary-precision arithmetic language.
bc [-] [file...]
First released in Issue 4.

No functional changes are made in this issue.

203



Utilities Utilities Migration

bg
Purpose: Run jobs in the background.
UP Synopsis: bg [job_id...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.
99
Purpose: Compile standard C programs.
CD Synopsis: €99 [options...] pathnanme [[pathnanme] [-I directory]
[-L directory] [-I library]]...

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899:1999
standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #020 (SD5-XCU-ERN-10) is applied,
adding a statement to the OUTPUT FILES section about unspecified behavior
when the pathname of an object file or executable file to be created by c99 resolves
to an existing directory entry for a file that is not a regular file.

Austin Group Interpretation 1003.1-2001 #166 is applied, adding information about
the use of getconf to obtain c99 arguments used for the threaded programming
environment.

Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the handling of
trailing white-space characters.

Austin Group Interpretation 1003.1-2001 #191 is applied, adding APPLICATION
USAGE and RATIONALE regarding C-language trigraphs.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

SD5-XCU-ERN-11 is applied, adding the <net/if.h> header to the descriptions of
-1 cand -1 xnet.

SD5-XCU-ERN-65 is applied, updating the EXAMPLES section.

The getconf variables for the supported programming environments are updated to
be V7.

The -1 trace library is marked obsolescent.

The c99 reference page is rewritten to describe -1 as an option rather than an
operand.

204 A Source Book from The Open Group (2010)



Utilities Migration

X8I

X8I

cal
Purpose:

Synopsis:

Derivation:

Issue 7:

cat
Purpose:
Synopsis:
Derivation:

Issue 7:

cd
Purpose:

Synopsis:

Derivation:

Issue 7:

cflow
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Print a calendar.

cal [[nonth] year]

First released in Issue 2.

No functional changes are made in this issue.

Concatenate and print files.
cat [-u] [file...]
First released in Issue 2.

SD5-XCU-ERN-174 is applied, changing the RATIONALE concerning an
alternative to the historical cat —etv.

Change the working directory.
cd [-L] -P] [directory]
cd -

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #037 is applied, updating steps 6 through
10 of the processing performed by cd to correct a number of defects.

Austin Group Interpretation 1003.1-2001 #199 is applied, clarifying how the cd
utility handles concatenation of two pathnames when the first pathname ends in a
slash character.

Step 7 of the processing performed by cd is revised to refer to curpath instead of
“the operand”.

The description of how the cd utility sets the PWD environment variable has been
changed to refer to the output of the pwd utility.

Generate a C-language flowgraph (DEVELOPMENT).

cflow [-r] [-d num [-D name[=def]]... [-i
[-Udir]... file...

incl] [l dir]...

First released in Issue 2.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 205



Utilities Utilities Migration

chgrp
Purpose: Change the file group ownership.
Synopsis: chgrp [-h] group file...

chgrp -R [-H -L| -P] group file...
Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-8 is applied, removing the —R from the first line of the SYNOPSIS.

chmod
Purpose: Change the file modes.
Synopsis:  chnmod [-R] node file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #130 is applied, adding text to the
DESCRIPTION about marking for update the last file status change timestamp of
the file.

chown

Purpose: Change the file ownership.

Synopsis: chown [-h] owner[:group] file...
chown -R [-H| -L| -P] owner[:group] file...
Derivation: First released in Issue 2.
Issue 7: SD5-XCU-ERN-9 is applied, removing the —R from the first line of the SYNOPSIS.

The description of the —h and —P options is revised.

cksum
Purpose: Wrrite file checksums and sizes.
Synopsis:  cksum [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

cmp

Purpose: Compare two files.

Synopsis: cmp [-1|-s] filel file2
Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-96 is applied, updating the STDERR section to specify the output
when the -1 option is used.

206 A Source Book from The Open Group (2010)



Utilities Migration

X8I

comm
Purpose:
Synopsis:
Derivation:

Issue 7:

command
Purpose:

Synopsis:

Derivation:

Issue 7:

compress
Purpose:

Synopsis:

Derivation:

Issue 7:

cp
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Select or reject lines common to two files.
comm [ -123] filel file2
First released in Issue 2.

No functional changes are made in this issue.

Execute a simple command.

command [ -p] comand_nane [argunent...]
comand [ -p] [ -v| -V] comrand_namne

First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #196 is applied, changing the SYNOPSIS
to allow —p to be used with —v (or —V).

The command utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The APPLICATION USAGE and EXAMPLES are revised to replace the non-
standard getconf CS_PATH with getconf PATH.

Compress data.
conpress [fv] [-b bits] [file...]
conpress [—cfv] [-b bits] [file]

First released in Issue 4.

Austin  Group Interpretation 1003.1-2001 #125 is applied,
ENVIRONMENT VARIABLES section in relation to locale usage.

revising the

Copy files.
cp [-Pfip] source file target file
cp [-Pfip] source file...
cp R [-H -L| -P]

t ar get

[-fip] source file... target

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #092 is applied, specifying that a
source_file or target_file operand of '—' shall refer to a file named ' - ;
implementations shall not treat them as meaning standard input or standard

output.

Austin Group Interpretation 1003.1-2001 #164 is applied, making the behavior
unspecified when cp encounters an existing dest_file that was written by a previous
step.

Austin Group Interpretation 1003.1-2001 #165 is applied, correcting the description

The Authorized Guide to the Single UNIX Specification, Version 4 207



Utilities

ur

SD

208

crontab
Purpose:

Synopsis:

Derivation:

Issue 7:

csplit
Purpose:

Synopsis:

Derivation:

Issue 7:

ctags
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities Migration

of the —i option to reflect that prompts are not written for existing directory files
(only non-directory files), as per the detailed steps in the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted if
the first pathname does not end in a slash.

The obsolescent —r option is removed.

The —P option is added to the SYNOPSIS and to the DESCRIPTION with respect to
its use without the —R option.

Schedule periodic background work.
crontab [file]

crontab [—e]| -l | -r]

First released in Issue 2.

The crontab utility (except for the —e option) is moved from the User Portability
Utilities option to the Base. User Portability Utilities is now an option for
interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the crontab utility.

The first example is changed to remove the unreliable use of find | xargs.

Split files based on context.
csplit [-ks] [-f prefix] [-n nunber] file arg...
First released in Issue 2.

The csplit utility is moved from the User Portability Ultilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The SYNOPSIS and OPERANDS sections are revised to clarify that use of a single
arg operand is permitted.

Create a tags file (DEVELOPMENT, FORTRAN).
ctags [-a] [f tagsfile] pathnane...

ctags —x pathnane. ..

First released in Issue 4.

The ctags utility is no longer dependent on support for the User Portability Utilities
option.

A Source Book from The Open Group (2010)



Utilities Migration

X8I

X8I

X8I

cut
Purpose:

Synopsis:

Derivation:

Issue 7:

cxref
Purpose:

Synopsis:

Derivation:

Issue 7:

date
Purpose:

Synopsis:

Derivation:

Issue 7:

dd
Purpose:
Synopsis:
Derivation:

Issue 7:

delta
Purpose:

Synopsis:

Derivation:

Utilities

Cut out selected fields of each line of a file.

[-n] [file...]

[file...]

[-d delinm [-s] [file...]
First released in Issue 2.

SD5-XCU-ERN-171 is applied, adding APPLICATION USAGE regarding the use
of the cut and fold utilities to create text files out of files with arbitrary line lengths.

cut b list
cut —c |ist

cut —f list

Generate a C-language program cross-reference table (DEVELOPMENT).

cxref [-cs] [-o file] [-wnum [-D nange[=def]]... [l dir]...

[-U nane]... file...

First released in Issue 2.

No functional changes are made in this issue.

Write the date and time.
date [-u] [+format]
date [-u] mmddhhnmi [ cc] yy]

First released in Issue 2.

No functional changes are made in this issue.

Convert and copy a file.
dd [operand...]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #102 is applied, adding requirements for
the output file to be extended when the input file is empty, seek=expr is specified
but conv=notrunc is not, and either the size of the seek is greater than the previous
size of the output file or the output file did not previously exist.

Make a delta (change) to an SCCS file (DEVELOPMENT).

delta [-nps] [-g list] [-mnrlist] [-r SID|
[-y[comment]] file...

First released in Issue 2.

The Authorized Guide to the Single UNIX Specification, Version 4 209



Utilities Utilities Migration

Issue 7: No functional changes are made in this issue.
df
Purpose: Report free disk space.

XSl Synopsis:  df [-k] [-P|=t] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #099 is applied, clarifying the XSI
requirements for operands which name a special file containing a file system.

The df utility is removed from the User Portability Utilities option. User Portability
Utilities is now an option for interactive utilities.

diff

Purpose: Compare two files.

Synopsis:  diff [-c|—e|—-f|-u]|-Cn|-Un] [-br] filel file2

When the —u option is specified, diff produces output in a form that provides three
lines of unified context.

When the -U n option is specified, diff produces output in a form that provides n
lines of unified context.

The —u or -U options behave like the —c or —C options, except that the context lines
are not repeated; instead, the context, deleted, and added lines are shown together,
interleaved.

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #114 is applied, requiring diff to detect
infinite loops in the file system when the -r option is specified.

Austin Group Interpretation 1003.1-2001 #115 is applied, updating requirements
when block or character special files are encountered in directories being
compared.

Austin Group Interpretation 1003.1-2001 #192 is applied, clarifying the behavior if
one or both files are non-text files.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the —u and -U
options.

dirname

Purpose: Return the directory portion of a pathname.

Synopsis:  di rname string

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

210 A Source Book from The Open Group (2010)



Utilities Migration

du
Purpose:
Synopsis:
Derivation:

Issue 7:

echo
Purpose:
Synopsis:
Derivation:

Issue 7:

ed
Purpose:
Synopsis:
Derivation:

Issue 7:

env
Purpose:
Synopsis:
Derivation:

Issue 7:

The Authorized Guide to the Single UNIX Specification, Version 4

Utilities

Estimate file space usage.
du [-a] -s] [-kx] [-H -L]

First released in Issue 2.

[file...]

The du utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

Write arguments to standard output.
echo [string...]
First released in Issue 2.

No functional changes are made in this issue.

Edit text.
ed [-p string] [-s] [file]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
an operand is’ - .

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

SD5-XCU-ERN-94 is applied, updating text in the EXTENDED DESCRIPTION
where a terminal disconnect is detected (in Commands in ed).

Set the environment for command invocation.
env [-i] [nanme=value]... [utility [argunent...]]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argument is ’ - .

Austin Group Interpretation 1003.1-2001 #047 is applied, providing RATIONALE
on how to use the env utility to preserve a conforming environment.

The EXAMPLES section is revised to change the use of env —i so that it preserves a
conforming environment.

211



Utilities

ur

ur

212

ex
Purpose:

Synopsis:

Derivation:

Issue 7:

expand
Purpose:

Synopsis:

Derivation:

Issue 7:

expr
Purpose:

Synopsis:

Derivation:

Issue 7:

false
Purpose:

Synopsis:

Derivation:

Issue 7:

fc
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities Migration

Text editor.

ex [-TR] [-s|—-v] [-c command] [-t tagstring]
[-wsize] [file...]

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
an operand is* - .

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

Convert tabs to spaces.
expand [t tablist] [file...]
First released in Issue 4.

The expand utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Evaluate arguments as an expression.
expr operand...
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

Return false value.
fal se
First released in Issue 2.

No functional changes are made in this issue.

Process the command history list.

fc [-r] [-e editor] [first [last]]
fc - [-nr] [first [last]]

fc —s [old=new] [first]

First released in Issue 4.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)



Utilities Migration

ur

fg
Purpose:

Synopsis:

Derivation:
Issue 7:
file
Purpose:

Synopsis:

Derivation:

Issue 7:

find
Purpose:
Synopsis:
Derivation:

Issue 7:

Utilities

Run jobs in the foreground.
fg [job_id]

First released in Issue 4.

No functional changes are made in this issue.

Determine file type.
file [-dh] [-Mfile] [-mfile] file...
[-h] file...

First released in Issue 4.

file —i

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is used if a file operand is ' - and the
implementation treats the’ =’ as meaning standard input.

SD5-XCU-ERN-4 is applied, adding further entries in the Notes column in XCU
Table 4-9, File Utility Output Strings .

The file utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

The EXAMPLES section is revised to make use of the " ——" delimiter.

Find files.
find [-H -L] path... [operand_expression...]
First released in Issue 2.

Austin  Group Interpretation 1003.1-2001 #127 is applied, rephrasing the
description of the —exec primary to be “immediately follows”.

Austin Group Interpretation 1003.1-2001 #185 1is applied, clarifying the
requirements for the —-H and -L options.

Austin  Group Interpretation 1003.1-2001 #186 1is applied, clarifying the
requirements for the evaluation of path operands with trailing slashes.

Austin Group Interpretation 1003.1-2001 #195 is applied, clarifying the
interpretation of the first operand.

SD5-XCU-ERN-48 is applied, clarifying the —-L option in the case that the file
referenced by a symbolic link does not exist.

SD5-XCU-ERN-117 is applied, clarifying the —perm primary.

SD5-XCU-ERN-122 is applied, adding a new EXAMPLE showing the useful
technique:

-exec sh -¢c '... "$@ ...’ sh {} +

The description of the -name primary is revised and the —path primary is added
(with a new example).

The Authorized Guide to the Single UNIX Specification, Version 4 213



Utilities Utilities Migration

fold
Purpose: Filter for folding lines.
Synopsis:  fold [-bs] [-ww dth] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the’ =’ as meaning standard input.

Austin  Group Interpretation 1003.1-2001 #204 is applied, updating the
DESCRIPTION to clarify when a <newline> can be inserted before or after a
<backspace>.

fort77

Purpose: FORTRAN compiler (FORTRAN).

FD Synopsis:  fort77 [—-c] [-g] [-L directory]... [-O optlevel] [-0 outfile]
[-s] [-W] operand...

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

fuser

Purpose: List process IDs of all processes that have one or more files open.
XSl Synopsis:  fuser [-cfu] file...

Derivation: First released in Issue 5.

Issue 7: SD5-XCU-ERN-90 is applied, updating the EXAMPLES section.
gencat
Purpose: Generate a formatted message catalog.

Synopsis:  gencat catfile nmsgfile...
Derivation: First released in Issue 3.

Issue 7: The gencat utility is moved from the XSI option to the Base.

get
Purpose: Get a version of an SCCS file (DEVELOPMENT).

XSI Synopsis:  get [-begkmnl Lpst] [-c cutoff] [-i list] [-r SID]
[x list] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

214 A Source Book from The Open Group (2010)



Utilities Migration

getconf
Purpose:

Synopsis:

Derivation:

Issue 7:

getopts
Purpose:
Synopsis:
Derivation:

Issue 7:
grep
Purpose:

Synopsis:

Derivation:

Issue 7:

hash
Purpose:

Synopsis:

Derivation:

Issue 7:

The Authorized Guide to the Single UNIX Specification, Version 4

Utilities

Get configuration values.

getconf [-v specification] systemvar
getconf [-v specification] path_var pathnane
First released in Issue 4.

No functional changes are made in this issue.

Parse utility options.
getopts optstring nane [arg...]
First released in Issue 4.

No functional changes are made in this issue.

Search a file for a pattern.

grep [-E|-F] [-c|-l]|-q] [-insvx] —e pattern_li st

[-e pattern_list]... [-f pattern file]... [file...]
grep [-E|-F] [-c|-l1|-q] [-insvx] [-e pattern_list]...

—f pattern file [-f pattern_file]... [file...]
grep [-E|-F] [-c|-lI|-q] [-insvx] pattern_list [file...]

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

SD5-XCU-ERN-98 is applied, updating the STDOUT section to reflect the fact that
the -1 and —q options are shown in the SYNOPSIS as mutually exclusive.

Remember or report utility locations.
hash [utility...]

hash -r

First released in Issue 2.

The hash utility is moved from the XSI option to the Base.

215



Utilities Utilities Migration

head
Purpose: Copy the first part of files.
Synopsis: head [-n nunber] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

The EXAMPLES section is revised to make use of the " ——" delimiter.

iconv

Purpose: Codeset conversion.

Synopsis: iconv [-cs] —f frommap -t tomap [file...]

iconv -f frontode [-cs] [-t tocode] [file...]
iconv -t tocode [-cs] [—f frontode] [file...]
i conv -l

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.
id
Purpose: Return user identity.

Synopsis:  id [user]
id -G [-n] [user]
id —-g [-nr] [user]
id -u [-nr] [user]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
ipcrm
Purpose: Remove an XSI message queue, semaphore set, or shared memory segment
identifier.
XSI Synopsis: i pcrm [ —g nmsgi d| -Q msgkey| -s semi d| -S senkey|

-m shmi d| -M shnkey] ..

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

216 A Source Book from The Open Group (2010)



Utilities Migration

X8I

ur

X8I

CD

ipcs
Purpose:

Synopsis:

Derivation:

Issue 7:

jobs
Purpose:

Synopsis:

Derivation:
Issue 7:
join
Purpose:

Synopsis:

Derivation:

Issue 7:
kill
Purpose:

Synopsis:

Derivation:

Issue 7:

lex
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Report XSI interprocess communication facilities status.

i pcs [—gnms] [ —a| —bcopt]

First released in Issue 5.

No functional changes are made in this issue.

Display status of jobs in the current session.
jobs [-lI|-p] [job_id...]

First released in Issue 4.

No functional changes are made in this issue.

Relational database operator.

join [-a file_nunmber|-v file_nunber] [-e string] [-0 |ist]
[-t char] [-1 field] [-2 field] filel file2

First released in Issue 2.

No functional changes are made in this issue.

Terminate or signal processes.
kill -s signal _nanme pid..
Kill -l

kill [-signal _nane] pid..

[exit _status]

kill [-signal _nunmber] pid..

First released in Issue 2.

No functional changes are made in this issue.

Generate programs for lexical tasks (DEVELOPMENT).
lex [-t] [-n|-v] [file...]

First released in Issue 2.

Austin  Group Interpretation 1003.1-2001 #190 is applied, clarifying the
requirements for generated code to conform to the IEEE Std 1003.1i-1995.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of
C-language trigraphs and curly brace preprocessing tokens.

The Authorized Guide to the Single UNIX Specification, Version 4 217



Utilities Utilities Migration

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

link
Purpose: Call link () function.
XSl Synopsis:  link filel file2

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

In

Purpose: Link files.

Synopsis: In [-fs] [-L|-P] source_ file target_file

In [-fs] [-L|-P] source_file... target_dir

When the -L option is specified (and the —s option is not specified), for each
source_file operand that names a file of type symbolic link, In creates a (hard) link to
the file referenced by the symbolic link.

When the -P option is specified (and the —s option is not specified), for each
source_file operand that names a file of type symbolic link, In creates a (hard) link to
the symbolic link itself.

If the —s option is not specified and neither a —L nor a —P option is specified, it is
implementation-defined which of the -L and —P options will be used as the
default.

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #164 is applied, allowing In to report an
error when it encounters an existing destination path that was written by a
previous step.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted if
the first pathname does not end in a slash.

Austin  Group Interpretation 1003.1-2001 #169 is applied, updating the
requirements when destination names the same directory entry as the current
source_file.

The -L and -P options are added to provide control over how the In utility creates
hard links to symbolic links.

locale
Purpose: Get locale-specific information.
Synopsis: | ocal e [-a| -nj

| ocal e [ -ck] nane...

Derivation: First released in Issue 4.

218 A Source Book from The Open Group (2010)



Utilities Migration

Issue 7:

localedef
Purpose:

Synopsis:

Derivation:

Issue 7:

logger
Purpose:
Synopsis:
Derivation:

Issue 7:

logname
Purpose:
Synopsis:
Derivation:

Issue 7:
lp
Purpose:

Synopsis:

Derivation:

Issue 7:

Is
Purpose:

XSI Synopsis:

Utilities

Austin Group Interpretation 1003.1-2001 #017 is applied, clarifying the standard
output for the —k option for non-numeric compound keyword values.

Austin Group Interpretations 1003.1-2001 #021 and #088 are applied, clarifying the
standard output for the -k option when LANG is not set or is an empty string.

Define locale environment.

| ocal edef [-c] [-f charmap] [-i sourcefile]
[-u code_set nane] nane

First released in Issue 4.

No functional changes are made in this issue.

Log messages.
| ogger string...
First released in Issue 4.

No functional changes are made in this issue.

Return the user’s login name.
| ognane
First released in Issue 2.

No functional changes are made in this issue.

Send files to a printer.

Ip[-c] [-d dest] [-n copies] [-msw] [-0 option]...
[-t title] [file...]

First released in Issue 2.

No functional changes are made in this issue.

List directory contents.
I s [ -ACFRSacdfi kl mpqgrstux1] [-H -L] [-go] [file...]

When the —A option is specified, Is writes out all directory entries, including those
whose names begin with a <period> (" . ') but excluding the entries dot and dot-
dot (if they exist).

When the -S option is specified, Is sorts with the primary key being file size (in
decreasing order) and the secondary key being filename in the collating sequence
(in increasing order).

When the -k option is specified, Is sets the block size for the —s option and the per-
directory block count written for the -1, -n, —s, —g, and —o options to 1024 bytes.

The Authorized Guide to the Single UNIX Specification, Version 4 219



Utilities Utilities Migration

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #101 is applied, clarifying the optional
alternate access method flag in the STDOUT section.

Austin Group Interpretation 1003.1-2001 #128 1is applied, clarifying the
DESCRIPTION and the definition of the —-R option with regard to symbolic links.

Austin  Group Interpretation 1003.1-2001 #198 1is applied, clarifying the
requirements for the —H option for symbolic links specified on the command line.

SD5-XCU-ERN-50 is applied, adding the —A option.

The S option is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

The —f, -m, —n, —p, —s, and —x options are moved from the XSI option to the Base.

The description of the —f, —s, and —t options are revised and the —k option is added.

m4
Purpose: Macro processor.
Synopsis: md [-s] [-D nanmg[=val]]... [-Unane]... file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #117 is applied, marking the maketemp
macro obsolescent and adding a new mkstemp macro.

Austin Group Interpretation 1003.1-2001 #207 is applied, clarifying the handling of
white-space characters that precede or trail any macro arguments.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

SD5-XCU-ERN-99 is applied, clarifying the definition of the divert macro in the
EXTENDED DESCRIPTION.

SD5-XCU-ERN-100 is applied, clarifying the definition of the syscmd macro in the
EXTENDED DESCRIPTION.

SD5-XCU-ERN-101 is applied, clarifying the definition of the undivert macro in
the EXTENDED DESCRIPTION.

SD5-XCU-ERN-111 is applied to the EXTENDED DESCRIPTION, clarifying that
the string " ${ " produces unspecified behavior.

SD5-XCU-ERN-112 is applied, updating the changequote macro.

SD5-XCU-ERN-118 is applied, clarifying the definition of the define macro in the
EXTENDED DESCRIPTION and APPLICATION USAGE sections.

SD5-XCU-ERN-119 is applied, clarifying the definition of the translit macro in the
EXTENDED DESCRIPTION and RATIONALE sections.

SD5-XCU-ERN-130 is applied, making the behavior unspecified when macro
names are used without arguments.

SD5-XCU-ERN-131 is applied, making the behavior unspecified when either
argument to the changecom macro is provided but null.

SD5-XCU-ERN-137 is applied, updating the description of the eval macro in the

220 A Source Book from The Open Group (2010)



Utilities Migration

ur

SD

mailx
Purpose:

Synopsis:

Derivation:

Issue 7:

make
Purpose:

Synopsis:

Derivation:

Issue 7:

man
Purpose:
Synopsis:
Derivation:

Issue 7:

Utilities

EXTENDED DESCRIPTION and APPLICATION USAGE sections.
The m4 utility is moved from the XSI option to the Base.

Process messages.
Send Mode

mai | x [-s subject] address...

Receive Mode
mai |l x —e
mai |l x [-H Nn] [-F] [-u user]

mailx —f [-H Nn] [-F] [file]

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #089 is applied, clarifying the effect of the
LC_TIME environment variable.

Austin Group Interpretation 1003.1-2001 #090 is applied, updating the description
of the next command.

Maintain, update, and regenerate groups of programs (DEVELOPMENT).

make [—einpgrst] [-f makefile]...
[target _nane...]

[ k| =S] [macro=val ue...]

First released in Issue 2.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

Include lines in makefiles are introduced.

Austin Group Interpretation 1003.1-2001 #131 is applied, changing the Makefile
Execution section.

Display system documentation.
man [ -k] nane...
First released in Issue 4.

Austin  Group Interpretation 1003.1-2001 #108 is applied, clarifying that
informational messages may appear on standard error.

The Authorized Guide to the Single UNIX Specification, Version 4 221



Utilities Utilities Migration

mesg

Purpose: Permit or deny messages.

Synopsis: nmesg [yl n]

Derivation: First released in Issue 2.

Issue 7: The mesg utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

mkdir

Purpose: Make directories.

Synopsis: nkdir [-p] [-m node] dir...

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-56 is applied, aligning the —-m option with the IEEE P1003.2b draft
standard to clarify an ambiguity.

mkfifo

Purpose: Make FIFO special files.

Synopsis:  nkfifo [-m node] file...

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

more
Purpose: Display files on a page-by-page basis.

UP Synopsis: nore [—ceisu] [-n nunber] [-p command] [-t tagstring]
[file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * +' may
be recognized as an option delimiter in the OPTIONS section.

mv

Purpose: Move files.

Synopsis: nv [-if] source_file target_file
mv [-if] source file... target dir

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #016 is applied, updating requirements
relating to a target_file operand with a trailing slash .

Austin Group Interpretation 1003.1-2001 #164 is applied, allowing mv to report an
error when it encounters an existing destination path that was written by a
previous step.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted if

222 A Source Book from The Open Group (2010)



Utilities Migration

X8I

SD
X8I

newgrp
Purpose:
Synopsis:
Derivation:

Issue 7:

nice
Purpose:
Synopsis:
Derivation:

Issue 7:

nl
Purpose:

Synopsis:

Derivation:

Issue 7:

nm
Purpose:

Synopsis:

Utilities

the first pathname does not end in a slash.

Austin  Group Interpretation 1003.1-2001 #169 is applied, updating the
requirements when the source_file operand and destination path name the same
existing file.

SD5-XCU-ERN-51 is applied to the DESCRIPTION, clarifying that it is unspecified
whether hard links to other files are preserved when files are being duplicated to
another file system.

Changes are made related to support for finegrained timestamps.

Change to a new group.
newgrp [-1] [group]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argument is * - .

The newgrp utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Invoke a utility with an altered nice value.
nice [-n increnent] utility [argument...]
First released in Issue 4.

The nice utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Line numbering filter.

nl [-p] [-b type] [-d delin] [-f type] [-h type] [-i
[-] nun] [-n format] [-s sep] [-v startnuni
[-wwdth] [file]

i ncr

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

Write the name list of an object file (DEVELOPMENT).

nm[-APv] [-g|-u] [t format] file...
nm[-APv] [-efox] [-g|-u] [t format] file...

The Authorized Guide to the Single UNIX Specification, Version 4 223



Utilities Utilities Migration

Derivation: First released in Issue 2.

Issue 7: The nm utility is removed from the User Portability Utilities option. User
Portability Utilities is now an option for interactive utilities.

nohup

Purpose: Invoke a utility immune to hangups.

Synopsis: nohup utility [argunent...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #104 is applied, allowing nohup to redirect
standard input from an unspecified file if it is associated with a terminal.

Austin Group Interpretations 1003.1-2001 #105 and #106 are applied, updating
requirements related to redirection of standard output and standard error.

od

Purpose: Dump files in various formats.

Synopsis: od [-v] [-A address_base] [ skip] [-N count]
[t type string]... [file...]

XSI od [ -bcdosx] [file] [[+]offset[.][Db]]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

paste

Purpose: Merge corresponding or subsequent lines of files.

Synopsis: paste [-s] [-d list] file...
Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

patch
Purpose: Apply changes to files.

Synopsis: patch [-bINR] [-c|—e|-n|-u] [-d dir] [-D define] [-i patchfile]
[-0 outfile] [-p num [-r rejectfile] [file]

When the —u option is specified, patch interprets the patch file as a unified context
difference (the output of the diff utility when the —u or —U options are specified).

Derivation: First released in Issue 4.

Issue 7: The patch utility is moved from the User Portability Ultilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the —u option.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description
of the LC_CTYPE environment variable and adding the LC_COLLATE

224 A Source Book from The Open Group (2010)



Utilities Migration

pathchk
Purpose:

Synopsis:

Derivation:

Issue 7:

pax
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

environment variable.

Check pathnames.
pat hchk [-p] [-P] pathnane...

When the -P option is specified, pathchk writes a diagnostic for each pathname
operand that:

 Contains a component whose first character is the <hyphen> character
o Isempty
First released in Issue 4.

Austin Group Interpretations 1003.1-2001 #039 and #040 are applied, adding the —P
option.

SD5-XCU-ERN-121 is applied, updating the way xargs is used in the EXAMPLES
section.

Portable archive interchange.

pax [-dv] [-c|-n] [-H -L] [-o options] [—f archive]

[-s replstr]... [pattern...]

pax -r[-c|-n] [-dikuv] [-H -L] [-f archive] [-0 options]...
[-p string]... [-s replstr]... [pattern...]

pax -w [—dituvX] [-H -L] [-b bl ocksize] [[-a] [-f archive]]
[-0 options]... [-s replstr]... [x format] [file...]

pax -r -w [—=diklntuvX] [-H -L] [-0 options]... [-p string]...
[-s replstr]... [file...] directory

First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #011 is applied, clarifying how symbolic
links are archived in cpio format.

Austin Group Interpretation 1003.1-2001 #086 is applied, clarifying that when a list
of files to copy is read from the standard input, each entry in the list is processed as
if it had been a file operand on the command line.

Austin Group Interpretation 1003.1-2001 #109 is applied, adding the hdrcharset
keyword to the pax extended headers, and related requirements.

SD5-XCU-ERN-2 is applied, making the —c and —n options mutually-exclusive in
the SYNOPSIS.

SD5-XCU-ERN-60 is applied, revising text which incorrectly implied that the —x
option could be used in copy mode.

The pax utility is no longer allowed to create separate identical symbolic links
when extracting linked symbolic links from an archive, because the standard now
requires implementations to support (hard) linking of symbolic links.

The Authorized Guide to the Single UNIX Specification, Version 4 225



Utilities Utilities Migration

pr
Purpose: Print files.
Synopsis: pr [+page] [-colum] [-adFmrt] [-e[char][gap]] [-h header]
[-i[char][gap]] [-] lines] [-n[char][wi dth]]
XSI [-0 offset] [-s[char]] [-wwidth] [-fp] [file...]

Derivation: First released in Issue 2.

Issue 7: PASC Interpretation 1003.2-92 #151 (SD5-XCU-ERN-44) is applied, replacing “two
or more” in the description of the i option with “one or more”.

Austin Group Interpretation 1003.1-2001 #093 is applied, adding APPLICATION
USAGE warning that a first operand that starts with a <plus-sign> needs to be
preceded with the " = —" argument that denotes the end of the options.

printf

Purpose: Write formatted output.

Synopsis: printf format [argunent...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #175 is applied, updating requirements
related to floating-point conversions to align with the printf() function.

Austin Group Interpretation 1003.1-2001 #177 is applied, clarifying the behavior of
the %€ conversion.

prs
Purpose: Print an SCCS file (DEVELOPMENT).
XSI Synopsis: prs [-a] [-d dataspec] [-r[SID] file...
prs [-e|-I] —-c cutoff [-d dataspec] file...

prs [-e|-I] -r[SID [-d dataspec] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
ps
Purpose: Report process status.
XSI Synopsis: ps [-aA] [-defl] [—-g grouplist] [-G grouplist]
[-n nanelist] [-o format]... [-p proclist] [-t termist]

[-u userlist] [-U userlist]
Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

226 A Source Book from The Open Group (2010)



Utilities Migration

pwd
Purpose:
Synopsis:
Derivation:

Issue 7:

qalter
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

qdel
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

gqhold
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

qmove
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

Utilities

Return working directory name.
pwd [-L| -]
First released in Issue 2.

Changes have been made to match the changes to the getcwd() function, adding
text to address the case where the current directory is deeper in the file hierarchy
than {PATH_MAX]} bytes, and adding the requirements relating to pathnames
beginning with two slash characters.

Alter batch job.

galter [-a date_tinme] [—-A account_string] [—c interval]
[-e path_nanme] [-h hold_list] [ join_list]
[k keep_list] [-] resource_list] [-m mail _options]
[-Mmail _list] [-N nanme] [-o path_nanme] [-p priority]
[-r yIn] [-S path_name_list] [-u user_list]
job _identifier...

Derived from IEEE Std 1003.2d-1994.

The galter utility is marked obsolescent.

Delete batch jobs.
gdel job_identifier...

Derived from IEEE Std 1003.2d-1994.
The gdel utility is marked obsolescent.

Hold batch jobs.

ghold [-h hold_list] job_identifier...
Derived from IEEE Std 1003.2d-1994.

The ghold utility is marked obsolescent.

Move batch jobs.

gnove destination job_identifier...

Derived from IEEE Std 1003.2d-1994.

The gmove utility is marked obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4 227



Utilities

qmsg
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

qrerun
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

qrls
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

gselect
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

qsig
Purpose:

OB BE  Synopsis:

Derivation:

Issue 7:

228

Send message to batch jobs.

Utilities Migration

gmsg [-EQQ nmessage_string job_identifier...

Derived from IEEE Std 1003.2d-1994.

The gmsg utility is marked obsolescent.

Rerun batch jobs.
grerun job_identifier...
Derived from IEEE Std 1003.2d-1994.

The grerun utility is marked obsolescent.

Release batch jobs.

grls [-h hold_list] job_identifier...

Derived from IEEE Std 1003.2d-1994.

The gris utility is marked obsolescent.

Select batch jobs.

gselect [-a [op]date_tinme] [—-A account_string]
[-c [op]interval] [-h hold_list] [-] resource_list]

[-N name] [-p [op]priority] [-
[-r yIn] [-s states] [-u user_

Derived from IEEE Std 1003.2d-1994.

The gselect utility is marked obsolescent.
Signal batch jobs.
gsig [-s signal] job_identifier...

Derived from IEEE Std 1003.2d-1994.

The gsig utility is marked obsolescent.

g destination]
list]

A Source Book from The Open Group (2010)



Utilities Migration

OB BE

OB BE

The Authorized Guide to the Single UNIX Specification, Version 4

gstat
Purpose:

Synopsis:

Derivation:

Issue 7:

qsub
Purpose:

Synopsis:

Derivation:

Issue 7:

read
Purpose:
Synopsis:
Derivation:

Issue 7:

renice
Purpose:
Synopsis:
Derivation:

Issue 7:

Utilities

Show status of batch jobs.
gstat [-f] job_identifier...
gstat -Q [-f] destination...

gstat -B [-f] server_nane...

Derived from IEEE Std 1003.2d-1994.

The gstat utility is marked obsolescent.

Submit a script.

gsub [-a date_tine] [-A account_string] [-c interval]
[-C directive_prefix] [-e path_nanme] [-h] [ join_list]
[k keep_list] [-mnail_options] [-Mmail _|ist] [-N nane]
[-0 path_nanme] [-p priority] [—q destination] [-r y|n]
[-S path_name_list] [-u user_list] [-v variable list] [-V]
[-z] [script]

Derived from IEEE Std 1003.2d-1994.

The gsub utility is marked obsolescent.

Read a line from standard input.
read [-r] var...
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #194 is applied, clarifying the handling of
the <backslash> escape character.

Set nice values of running processes.
renice [-g| -p|-u] -n increment ID...
First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline
9 of the Utility Syntax Guidelines does not apply (options can be interspersed with
operands).

The renice utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

229



Utilities Utilities Migration

rm
Purpose: Remove directory entries.
Synopsis:  rm[—-fiRr] file...
Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #019 is applied, requiring rm to report an
error if an operand resolves to the root directory.

Austin Group Interpretation 1003.1-2001 #091 is applied, updating the description
of exit status 0 in the EXIT STATUS section.

rmdel
Purpose: Remove a delta from an SCCS file (DEVELOPMENT).
XSl Synopsis:  rndel -r SID file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
rmdir
Purpose: Remove directories.

Synopsis: rodir [-p] dir...
Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

sact
Purpose: Print current SCCS file-editing activity (DEVELOPMENT).

XSl Synopsis:  sact file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

sccs
Purpose: Front end for the SCCS subsystem (DEVELOPMENT).

XSI Synopsis:  sccs [—r] [-d path] [-p path] conmand [options...]
[ operands. . .]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

230 A Source Book from The Open Group (2010)



Utilities Migration

sed
Purpose:

Synopsis:

Derivation:

Issue 7:

sh
Purpose:

Synopsis:

Derivation:

Issue 7:

sleep
Purpose:

Synopsis:

Derivation:

Issue 7:

The Authorized Guide to the Single UNIX Specification, Version 4

Utilities

Stream editor.

sed [-n] script [file...]

sed [-n] -e script [-e script]... [-f script _file]...
[file...]

sed [-n] [-e script]... —f script file [-f script _file]...
[file...]

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

SD5-XCU-ERN-123 is applied, updating the SYNOPSIS so that it correctly reflects
the relationship between the script operand and the —e and —f options.

A second example is added, giving a simpler method of squeezing empty lines.

Shell, the standard command language interpreter.

sh [ —abCef hi muvx] [-0 option]... [+abCefhi muvx]
[+o option]... [command file [argunent...]]

sh —c [ -abCef hi mmuvx] [-0 option]... [+abCefhi muvx]
[+o0 option]... comand_string [command_nane [argunent...]]

sh —s [ -abCef hi mmuvx] [-0 option]... [+abCefhi muvx]

[+o option]... [argunent...]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #098 is applied, changing the description
of IFS to match the one in section 2.5.3.

The description of the PWD environment variable is updated to reflect that
assignments to the variable may always be ignored.

Minor changes are made to the install script example in the APPLICATION
USAGE section.

Suspend execution for an interval.
sleep tine
First released in Issue 2.

No functional changes are made in this issue.

231



Utilities Utilities Migration

sort
Purpose: Sort, merge, or sequence check text files.

Synopsis: sort [-m [-o0 output] [-bdfinru] [-t char] [-k keydef]...
[file...]

sort [-c|-C] [-bdfinru] [-t char] [-k keydef] [file]

The —C option is the same as —c, except that a warning message is not sent to
standard error if disorder or, with —u, a duplicate key is detected.

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline
9 of the Utility Syntax Guidelines does not apply (options can be interspersed with
operands), and noting that’ +' may be recognized as an option delimiter.

Austin Group Interpretation 1003.1-2001 #120 is applied, updating the —c option to
require that the warning message sent to standard error indicates where the
disorder or duplicate key was found, and introducing the —C option.

XCU-ERN-81 is applied, modifying the description of the —i option to state that the
behavior is undefined for a sort key for which —n also applies.

split
Purpose: Split files into pieces.
Synopsis: split [-l line_count] [-a suffix_length] [file[nane]]

split -b n[kjm [-a suffix_length] [file[nane]]

Derivation: First released in Issue 2.

Issue 7: The split utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

strings

Purpose: Find printable strings in files.

Synopsis: strings [-a] [t format] [-n number] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argument is’ - .

The strings utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

strip

Purpose: Remove unnecessary information from strippable files (DEVELOPMENT).

SD Synopsis:  strip file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #103 is applied, clarifying that XSI-
conformant systems support use of strip on archive files containing object files or
relocatable files.

232 A Source Book from The Open Group (2010)



Utilities Migration

X8I

ur

stty
Purpose:

Synopsis:

Derivation:

Issue 7:

tabs
Purpose:

Synopsis:

Derivation:

Issue 7:

tail
Purpose:
Synopsis:
Derivation:

Issue 7:

talk
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Set the options for a terminal.
stty [-al -g]

stty operand...

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality
relating to the IXANY symbol from the XSI option to the Base.

Set terminal tabs.

tabs [ -n| —a| —a2| —c| —c¢2| —c3| —f | -p| =s| L] [-T type]
tabs [-T type] n[[sep[+]n]...]

First released in Issue 2.

The tabs utility is removed from the User Portability Utilities option. User
Portability Utilities is now an option for interactive utilities.

Copy the last part of a file.
tail [-f] [-c nunber|-n nunber] [file]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * + may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if the file operand is ' =’ and the
implementation treats the’ =’ as meaning standard input.

Austin Group Interpretation 1003.1-2001 #100 is applied, adding the requirement
on applications that if the sign of the option-argument number is ' +' , the number
option-argument is non-zero.

SD5-XCU-ERN-114 is applied, updating the —f option so that a FIFO on standard
input is treated the same as a pipe.

Talk to another user.
tal k address [term nal]

First released in Issue 4.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 233



Utilities Utilities Migration

tee

Purpose: Duplicate standard input.

Synopsis: tee [-ai] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, specifying that a file
operand of ' =’ shall refer to a file named ’ -’ ; implementations shall not treat it as
meaning standard output.

test

Purpose: Evaluate expression.

Synopsis: test [expression]

[ [expression] ]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #107 is applied, marking the XSI
extensions specifying the —a and —o primaries and the ' (’ and ')’ operators as
obsolescent. Applications should combine separate test commands instead. For
example, using;:

test exprl && test expr2
instead of:

test exprl —a expr2

time

Purpose: Time a simple command.

Synopsis: time [-p] utility [argunent...]

Derivation: First released in Issue 2.

Issue 7: The time utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

touch

Purpose: Change file access and modification times.

Synopsis: touch [-acm [-r ref _filel -t tine|—-d date_tine] file...

When the —d date_time option is specified, touch uses the specified date_time instead
of the current time. The option-argument is a string of the form:

YYYY-MW-DDThh: nm SS[ . frac] [t z]
or:

YYYY-MW-DDThh: nm SS[, frac] [t z]
where:

e YYYY are at least four decimal digits giving the year.

234 A Source Book from The Open Group (2010)



Utilities Migration

Derivation:

Issue 7:

tput
Purpose:
Synopsis:
Derivation:

Issue 7:

Utilities

e MM, DD, hh, mm, and SS are as with —t time.
* Tis the time designator, and can be replaced by a single <space>.

o« [.frac] and [, frac] are either empty, or a <period> (' .’ ) or a <comma>
(', ) respectively, followed by one or more decimal digits, specifying a
fractional second.

e [tZz] is either empty, signifying local time, or the letter * Z' , signifying UTC.
The following examples demonstrate the use of the —d option.

Create or update a file called dwc; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
local time:

touch -d 2007-11-12T10: 15: 30 dwc

Create or update a file called nick; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
UTC:

touch -d 2007-11-12T10: 15: 30Z ni ck

Create or update a file called gwc; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
local time with a fractional second timestamp of .002 seconds:

touch -d 2007-11-12T10: 15: 30, 002 gwc

Create or update a file called ajosey; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
UTC with a fractional second timestamp of .002 seconds:

touch -d "2007-11-12 10: 15: 30. 002Z" aj osey
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #118 is applied, allowing touch to support
times that precede the Epoch.

Austin Group Interpretation 1003.1-2001 #193 is applied, adding the —d option
with support for subsecond timestamps.

SD5-XCU-ERN-45 is applied, adding a new paragraph to the RATIONALE noting
that if at least two operands are specified and the first operand is an eight or ten-
digit decimal integer, the first operand will be taken to be a file operand, whereas
in previous versions of the standard it would have been taken to be an
(obsolescent) date_time operand.

Changes are made related to support for finegrained timestamps.

Change terminal characteristics.
tput [-T type] operand...
First released in Issue 4.

The tput utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The Authorized Guide to the Single UNIX Specification, Version 4 235



Utilities Utilities Migration

tr

Purpose: Translate characters.

Synopsis: tr [—c|-C] [-s] stringl string2
tr =s [—-c|-C] stringl
tr =d [-c|-C] stringl
tr =ds [-c|-C] stringl string2

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #132 is applied, clarifying that the
behavior is unspecified if an unescaped trailing <backslash> is present in string1 or
string2.

true

Purpose: Return true value.

Synopsis:  true

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
tsort
Purpose: Topological sort.

Synopsis:  tsort [file]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

The tsort utility is moved from the XSI option to the Base.

tty

Purpose: Return user’s terminal name.
Synopsis:  tty

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
type
Purpose: Write a description of command type.

XSI Synopsis:  type nane. ..

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

236 A Source Book from The Open Group (2010)



Utilities Migration

X8I

X8I

ulimit
Purpose:

Synopsis:

Derivation:

Issue 7:

umask
Purpose:
Synopsis:
Derivation:

Issue 7:

unalias
Purpose:

Synopsis:

Derivation:

Issue 7:

uname
Purpose:
Synopsis:
Derivation:

Issue 7:

uncompress
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Set or report file size limit.

ulimt [—f] [bl ocks]

First released in Issue 2.

No functional changes are made in this issue.

Get or set the file mode creation mask.
umask [-S] [ mask]
First released in Issue 2.

No functional changes are made in this issue.

Remove alias definitions.
unal i as alias-nane...
unal i as -a

First released in Issue 4.

The unalias utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Return system name.
unanme [ -ammrsv]
First released in Issue 2.

No functional changes are made in this issue.

Expand compressed data.

unconpress [-cfv] [file...]

First released in Issue 4.

SD5-XCU-ERN-26 is applied, clarifying that this utility is allowed to break the
Utility Syntax Guidelines by having ten letters in its name.

The Authorized Guide to the Single UNIX Specification, Version 4 237



Utilities Utilities Migration

unexpand
Purpose: Convert spaces to tabs.
Synopsis: unexpand [-a| -t tablist] [file...]
Derivation: First released in Issue 4.
Issue 7: The unexpand utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.
unget
Purpose: Undo a previous get of an SCCS file (DEVELOPMENT).
XSI Synopsis: unget [-ns] [-r SID file..

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
uniq
Purpose: Report or filter out repeated lines in a file.

Synopsis: uniq [—c|-d|-u] [-f fields] [-s char] [input_file [output_file]]
Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * + may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDOUT
section to reflect that standard output is also used if an output_file operand is ' —’
and the implementation treats the’ ' as meaning standard output.

Austin Group Interpretation 1003.1-2001 #133 is applied, clarifying that the trailing
<newline> of each line in the input is ignored when doing comparisons.

unlink
Purpose: Call the unlink() function.
XSl Synopsis:  unlink file

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.
uucp
Purpose: System-to-system copy.
uu Synopsis: uucp [—cCdfjnr] [-n user] source-file... destination-file

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

238 A Source Book from The Open Group (2010)



Utilities Migration

uu

uu

X8I

uudecode
Purpose:
Synopsis:
Derivation:

Issue 7:

uuencode
Purpose:
Synopsis:
Derivation:

Issue 7:

uustat
Purpose:

Synopsis:

Derivation:

Issue 7:

uux
Purpose:

Synopsis:

Derivation:

Issue 7:

val
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Decode a binary file.
uudecode [-0 outfile] [file]
First released in Issue 4.

The uudecode utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Encode a binary file.
uuencode [-n] [file] decode_pat hnane
First released in Issue 4.

The uuencode utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

uucp status enquiry and job control.
uustat [-q| -k j obi d| -r j obid]

uustat [-s system [-u user]

First released in Issue 2.

SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

Remote command execution.

uux [—j np] command-string

First released in Issue 2.

SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

Validate SCCS files (DEVELOPMENT).
val -

val [-s] [-mname] [-r SID [-y type] file...

First released in Issue 2.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 239



Utilities Utilities Migration

vi
Purpose: Screen-oriented (visual) display editor.
UP Synopsis:  vi [-TR] [-c command] [-t tagstring] [-w size] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * +' may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #087 is applied, updating the Put from
Buffer Before (P) command description to address multi-line requirements.

wait

Purpose: Await process completion.

Synopsis:  wait [pid...]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
wce
Purpose: Word, line, and byte or character count.

Synopsis:  we [—c|-n [-Iw] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the’ =’ as meaning standard input.

what

Purpose: Identify SCCS files (DEVELOPMENT).
XSl Synopsis:  what [-s] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
who
Purpose: Display who is on the system.
XSI Synopsis:  who [-nTu] [-abdH prt] [file]
XSI who [-mu] -s [-bH prt] [file]
who —q [file]
who am i
who am |

240 A Source Book from The Open Group (2010)



Utilities Migration

X8I

CD

Derivation:

Issue 7:

write
Purpose:
Synopsis:
Derivation:

Issue 7:

xargs
Purpose:

Synopsis:

Derivation:

Issue 7:

yacc
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

First released in Issue 2.
SD5-XCU-ERN-58 is applied, clarifying the —b option.

The who utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Write to another user.
wite user_nane [term nal]
First released in Issue 2.

The write utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Construct argument lists and invoke utility.

xargs [-ptx] [-E eofstr] [l replstr|-L nunber|-n nunber]
[-s size] [utility [argunent...]]

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #123 is applied, changing the description
of the xargs I option.

SD5-XCU-ERN-68 is applied, changing requirements related to the —x option and
changing the SYNOPSIS to show that the -I, -L and —n options are mutually
exclusive.

SD5-XCU-ERN-128 is applied, clarifying the DESCRIPTION of the logical end-of-
file string.

SD5-XCU-ERN-132 is applied, updating the EXAMPLES section to demonstrate
how to quote xargs input appropriately, and the use of -E "" to prevent accidental
logical end-of-file processing.

Yet another compiler compiler (DEVELOPMENT).

yacc [-ditv] [-b file_prefix] [-p symprefix] granmmar

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the
requirements for generated code to conform to the IEEE Std 1003.1i-1995.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of
C-language trigraphs and curly brace preprocessing tokens.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

The Authorized Guide to the Single UNIX Specification, Version 4 241



Utilities

X8I

242

zcat
Purpose:

Synopsis:

Derivation:

Issue 7:

Expand and concatenate data.

zcat [file...]

First released in Issue 4.

No functional changes are made in this issue.

Utilities Migration

A Source Book from The Open Group (2010)



Chapter 13

Headers Migration

13.1 Introduction

This chapter contains a section for each header defined in XBD, Issue 7. Each section contains the
SYNOPSIS, gives the derivation of the header, and identifies syntax and semantic changes made
to the header in Issue 7 (if any). Only changes that might affect an application programmer are

identified.

13.2 Headers
<aio.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

Asynchronous input and output.
#i ncl ude <aio. h>

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The <aio.h> header is moved from the Asynchronous Input and Output option to
the Base.

This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

<arpal/inet.h>

Purpose:
Synopsis:

Derivation:

Issue 7:

<assert.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Definitions for Internet operations.
#i ncl ude <arpa/inet.h>

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

No functional changes are made in this issue.

Verify program assertion.
#i ncl ude <assert. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 243



Headers Headers Migration

<complex.h>

Purpose: Complex arithmetic.

Synopsis:  #i ncl ude <conpl ex. h>

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899:1999

standard.
Issue 7: No functional changes are made in this issue.
<cpio.h>
Purpose: Cpio archive values.

Synopsis:  #i ncl ude <cpi o. h>
Derivation: First released in the . Derived from the IEEE Std 1003.1-1988 (POSIX.1).
Issue 7: The <cpio.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<ctype.h>
Purpose: Character types.
Synopsis:  #i ncl ude <ctype. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The *_I() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

<dirent.h>

Purpose: Format of directory entries.

Synopsis: ~ #i ncl ude <dirent.h>
Derivation: First released in Issue 2.

Issue 7: The alphasort(), dirfd(), and scandir() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 1.

The fdopendir() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Austin Group Interpretation 1003.1-2001 #110 is applied, clarifying that the DIR
type may be defined as an incomplete type.

<dlfen.h>

Purpose: Dynamic linking.

Synopsis:  #i ncl ude <dl fcn. h>

Derivation: First released in Issue 5.

Issue 7: The <dlfcn.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

244 A Source Book from The Open Group (2010)



Headers Migration

<errno.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<fentl.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<fenv.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

Headers

System error numbers.
#i ncl ude <errno. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #050 is applied, allowing [ENOTSUP] and
[EOPNOTSUPP] to be the same values.

The [ENOTRECOVERABLE] and [EOWNERDEAD)] errors are added from The
Open Group Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.
Functionality relating to the Threads option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

File control options.
#i ncl ude <fcntl. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT
flag.

Austin  Group Interpretation 1003.1-2001 #171 is applied, adding the
F_DUPFD_CLOEXEC and O_CLOEXEC flags.

The openat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The O_EXEC and O_SEARCH flags are added.

Additional flags are added to support faccessat(), fchmodat(), fchownat (), fstatat(),
linkat (), openat (), and unlinkat ().

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

Floating-point environment.
#i ncl ude <fenv. h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899:1999
standard.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #37 (SD5-XBD-ERN-49) is
applied, clarifying that if no floating-point exception macros are defined by the
implementation, FE_ALL_EXCEPT shall be defined as zero.

ISO/IEC 9899:1999 standard, Technical Corrigendum 3 #36 is applied, requiring
that the floating-point exception macros expand to integer constant expressions
with values that are bitwise-distinct.

SD5-XBD-ERN-48 and SD5-XBD-ERN-69 are applied, clarifying that
implementations which support the IEC 60559 Floating-Point option are required

The Authorized Guide to the Single UNIX Specification, Version 4 245



Headers Headers Migration

to define all five floating-point exception macros and all four rounding direction
macros.

This reference page is clarified with respect to macros and symbolic constants.

<float.h>

Purpose: Floating types.

Synopsis:  #i ncl ude <fl oat.h>

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #4 (SD5-XBD-ERN-50) is
applied, clarifying that an implementation may give zero and non-numeric values,
such as infinities and NaNss, a sign, or may leave them unsigned.

ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #5 (SD5-XBD-ERN-51) is
applied, extending the text concerning floating-point accuracy to cover conversion
between floating-point internal representations and string representations
performed by the functions in <stdio.h>, <stdlib.h>, and <wchar.h>.

<fmtmsg.h>
Purpose: Message display structures.
XSl Synopsis:  #i ncl ude <fntnsg. h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<fnmatch.h>

Purpose: Filename-matching types.

Synopsis:  #i ncl ude <fnnat ch. h>

Derivation: First released in Issue 4. Derived from the .

Issue 7: The obsolescent FNM_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

<ftw.h>
Purpose: File tree traversal.
XSl Synopsis:  #i ncl ude <ftw. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The ftw() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

246 A Source Book from The Open Group (2010)



Headers Migration Headers

<glob.h>

Purpose: Pathname pattern-matching types.
Synopsis:  #i ncl ude <gl ob. h>

Derivation: First released in Issue 4. Derived from the .

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.
The obsolescent GLOB_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

<grp.h>
Purpose: Group structure.
Synopsis:  #i ncl ude <grp. h>

Derivation: First released in Issue 1.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

<iconv.h>

Purpose: Codeset conversion facility.

Synopsis:  #i ncl ude <iconv. h>
Derivation: First released in Issue 4.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.
The <iconv.h> header is moved from the XSI option to the Base.

<inttypes.h>
Purpose: Fixed size integer types.
Synopsis: ~ #i ncl ude <inttypes. h>

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.
<is0646.h>
Purpose: Alternative spellings.

Synopsis:  #i ncl ude <i s0646. h>
Derivation: First released in Issue 5. Derived from .

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 247



Headers

X8I

248

<langinfo.h>

Purpose:
Synopsis:
Derivation:

Issue 7:

<libgen.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<limits.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

Language information constants.

#i ncl ude <l angi nfo. h>

First released in Issue 2.

The <langinfo.h> header is moved from the XSI option to the Base.

The nl_langinfo_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <locale.h> for the locale_t type is added.

Definitions for pattern matching functions.
#i ncl ude <l i bgen. h>
First released in Issue 4, Version 2.

No functional changes are made in this issue.

Implementation-defined constants.
#include <limts.h>
First released in Issue 1.

Austin  Group Interpretation 1003.1-2001 #143 is applied,
implementations to support pathnames longer than {PATH_MAX]}.

allowing

Austin Group Interpretation 1003.1-2001 #173 is applied, updating the descriptions
of {TRACE_EVENT_NAME_MAX]} and {TRACE_NAME_MAX} to not include the
terminating null.

SD5-XBD-ERN-36 is applied, changing the description of {RE_DUP_MAX] to
clarify that it applies to both BREs and EREs.

{NL_NMAX} is removed; it should have been removed in Issue 6.
The Trace option values are marked obsolescent.

The {ATEXIT_MAX}, {LONG_BIT}, {NL_MSGMAX]}, {NL_SETMAX]},
{NL_TEXTMAX}, and {WORD_BIT} values are moved from the XSI option to the
Base.

Functionality relating to the Asynchronous Input and Output, Realtime Signals
Extension, Threads, and Timers options is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

A Source Book from The Open Group (2010)



Headers Migration Headers

<locale.h>
Purpose: Category macros.
Synopsis:  #i ncl ude <l ocal e. h>
Derivation: First released in Issue 3.
Included for alignment with the IEEE Std 1003.1i-1995.

Issue 7: The duplocale(), freelocale(), newlocale(), and uselocale() functions are added from
The Open Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

<math.h>

Purpose: Mathematical declarations.
Synopsis:  #i ncl ude <math. h>
Derivation: First released in Issue 1.

Issue 7: ISO/IEC 9899:1999 standard, Technical Corrigendum 2 #47 (SD5-XBD-ERN-52) is
applied, updating the wording of the FP_FAST_FMA macro to require that it
expands to the integer constant 1 if it is defined.

The MAXFLOAT constant is marked obsolescent. Applications should use
FLT_MAX as described in the <float.h> header instead.

This reference page is clarified with respect to macros and symbolic constants.

<monetary.h>

Purpose: Monetary types.

Synopsis:  #i ncl ude <nonetary. h>

Derivation: First released in Issue 4.

Issue 7: The <monetary.h> header is moved from the XSI option to the Base.

The strmon_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

A reference to <locale.h> for the locale_t type is added.

<mqueue.h>

Purpose: Message queues (REALTIME).

MSG Synopsis:  #i ncl ude <ngueue. h>
Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.
Issue 7: Type and structure definitions from other headers are added.

The Authorized Guide to the Single UNIX Specification, Version 4 249



Headers Headers Migration

<ndbm.h>
Purpose: Definitions for ndbm database operations.
XSl Synopsis:  #i ncl ude <ndbm h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.
<netdb.h>
Purpose: Definitions for network database operations.

Synopsis:  #i ncl ude <netdb. h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: SD5-XBD-ERN-14 is applied, changing the description of the s_port member of the
servent structure to clarify the way in which port numbers are converted to and
from network byte order.

The obsolescent h_errno external integer, and the obsolescent gethostbyaddr() and
gethostbyname() functions are removed, along with the HOST_NOT_FOUND,
NO_DATA, NO_RECOVERY, and TRY_AGAIN macros.

This reference page is clarified with respect to macros and symbolic constants.

<net/if.h>
Purpose: Sockets local interfaces.
Synopsis:  #i ncl ude <net/if.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<netinet/in.h>
Purpose: Internet address family.
Synopsis:  #i ncl ude <netinet/in.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<netinet/tcp.h>
Purpose: Definitions for the Internet Transmission Control Protocol (TCP).
Synopsis: ~ #i ncl ude <netinet/tcp. h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

250 A Source Book from The Open Group (2010)



Headers Migration Headers

<nl_types.h>

Purpose: Data types.

Synopsis:  #i ncl ude <nl _types. h>

Derivation: First released in Issue 2.

Issue 7: The <nl_types.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<poll.h>

Purpose: Definitions for the poll() function.
Synopsis:  #i ncl ude <pol | . h>
Derivation: First released in Issue 4, Version 2.

Issue 7: The <poll.h> header is moved from the XSI option to the Base.

<pthread.h>

Purpose: Threads.

Synopsis:  #i ncl ude <pt hread. h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads

Extension.

Issue 7: SD5-XBD-ERN-55 is applied, adding the restrict keyword to the
pthread_mutex_timedlock() function prototype so that it matches the definition in
XSH.

Austin  Group Interpretation 1003.1-2001 #048 is applied, reinstating the
PTHREAD_RWLOCK_INITIALIZER symbol.

The <pthread.h> header is moved from the Threads option to the Base.

The  PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT extended
mutex types are moved from the XSI option to the Base.

The PTHREAD_MUTEX_ROBUST and PTHREAD_MUTEX_STALLED symbols
and  the  pthread_mutex_consistent(),  pthread_mutexattr_getrobust(),  and
pthread_mutexattr_setrobust () functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 2.

Functionality relating to the Thread Priority Protection and Thread Priority
Inheritance options is changed to be Non-Robust Mutex or Robust Mutex Priority
Protection and Non-Robust Mutex or Robust Mutex Priority Inheritance,
respectively.

This reference page is clarified with respect to macros and symbolic constants.

The Authorized Guide to the Single UNIX Specification, Version 4 251



Headers

X8I

252

<pwd.h>
Purpose:

Synopsis:

Derivation:

Issue 7:

<regex.h>
Purpose:

Synopsis:

Derivation:

Issue 7:

<sched.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<search.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

Password structure.
#i ncl ude <pwd. h>
First released in Issue 1.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

Regular expression matching types.
#i ncl ude <regex. h>

First released in Issue 4.

Originally derived from the .

SD5-XBD-ERN-60 is applied, removing the requirement that the type regoff_t can
hold the largest value that can be stored in type off_t, and adding the requirement
that the type regoff_t can hold the largest value that can be stored in type
ptrdiff t.

The obsolescent REG_ENOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Execution scheduling.
#i ncl ude <sched. h>

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #064 is applied, correcting the option
markings.

The <sched.h> header is moved from the Threads option to the Base.

Definitions for the pid_t and time_t types and the timespec structure are added.

Search tables.
#i ncl ude <search. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)



Headers Migration

Headers

<semaphore.h>

Purpose:
Synopsis:

Derivation:

Issue 7:

<setjmp.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<signal.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Semaphores.
#i ncl ude <semaphore. h>

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XBD-ERN-57 is applied, allowing the header to make visible symbols from
the <time.h> header.

The <semaphore.h> header is moved from the Semaphores option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Stack environment declarations.
#i ncl ude <setjnp. h>
First released in Issue 1.

No functional changes are made in this issue.

Signals.
#i ncl ude <signal . h>
First released in Issue 1.

SD5-XBD-ERN-39 is applied, removing the sigstack structure which should have
been removed at the same time as the LEGACY sigstack() function.
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

Austin Group Interpretation 1003.1-2001 #034 is applied, moving SIGPOLL from
the XSI option to the XSI STREAMS option.

The psiginfo() and psignal() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 1.

Functionality relating to the XSI STREAMS option is marked obsolescent.

The SA_RESETHAND, SA_RESTART, SA_NOCLDWAIT, and SA_NODEFER
constants are moved from the XSI option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

The descriptions of SIGRTMIN and SIGRTMAX are updated to clarify that they
expand to positive integer expressions with type int, but which need not be
constant expressions.

The APPLICATION USAGE section is updated to describe the conditions under
which the si_pid and si_uid members of siginfo_t are required to be valid.

The Authorized Guide to the Single UNIX Specification, Version 4 253



Headers

SPN

254

<spawn.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stdarg.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stdbool.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<stddef.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stdint.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

Headers Migration

Spawn (ADVANCED REALTIME).
#i ncl ude <spawn. h>
First released in Issue 6. Included for alignment with IEEE Std 1003.1d-1999.

This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

Handle variable argument list.
#i ncl ude <stdarg. h>
First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

No functional changes are made in this issue.

Boolean type and values.
#i ncl ude <stdbool . h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899:1999
standard.

No functional changes are made in this issue.

Standard type definitions.

#incl ude <stddef. h>

First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

This reference page is clarified with respect to macros and symbolic constants.

SD5-XBD-ERN-53 is applied, updating the definition of wchar_t to align with
ISO/IEC 9899:1999 standard, Technical Corrigendum 3 in relation to the
_ STDC_MB_MIGHT_NEQ_WC__ indicator macro.

Integer types.
#i ncl ude <stdint. h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899:1999
standard.

ISO/IEC 9899:1999 standard, Technical Corrigendum 3 #40 is applied, requiring
the argument to the INT*_C() macros to be an unsuffixed integer constant.

SD5-XBD-ERN-67 is applied, updating the RATIONALE to clarify that
{SCHAR_MIN} has the value —128.

A Source Book from The Open Group (2010)



Headers Migration

<stdio.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stdlib.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<string.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers

Standard buffered input/output.
#i ncl ude <stdio. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #172 is applied, adding rationale about a
conflict for the definition of {TMP_MAX} with the IEEE Std 1003.1i-1995 and the
related ISO C defect report.

SD5-XBD-ERN-99 is applied, adding APPLICATION USAGE about
{FOPEN_MAX]} and the use of file descriptors not associated with streams.

The dprintf(), fmemopen(), getdelim(), getline(), open_memstream(), and vdprintf()
functions are added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

The renameat () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The gets(), tmpnam(), and tempnam() functions and the L_tmpnam macro are
marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <sys/types.h> for the off_t type is added.

Standard library definitions.

#i ncl ude <stdlib. h>

First released in Issue 3.

The LEGACY functions are removed.

The mkdtemp () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The rand_r() function is marked obsolescent.
This reference page is clarified with respect to macros and symbolic constants.

The type of the first argument to setstate() is changed from const char * to char *.

String operations.

#i ncl ude <string. h>

First released in Issue 1. Derived from Issue 1 of the SVID.

SD5-XBD-ERN-15 is applied, correcting the prototype for the strerror_r() function.

The stpepy (), stpncpy(), strndup(), strnlen(), and strsignal() functions are added
from The Open Group Technical Standard, 2006, Extended API Set Part 1.

The strcoll_I(), strerror_I(), and strxfrm_I() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <locale.h> for the locale_t type is added.

The Authorized Guide to the Single UNIX Specification, Version 4 255



Headers Headers Migration

OB XSR

X8I

X8I

256

<strings.h>

Purpose: String operations.

Synopsis:  #i ncl ude <strings. h>
Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.
The LEGACY functions are removed.
The <strings.h> header is moved from the XSI option to the Base.

The strcasecnp_I() and strncasecnp_I() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 4.

A reference to <locale.h> for the locale_t type is added.

<stropts.h>

Purpose: STREAMS interface (STREAMS).

Synopsis:  #i ncl ude <stropts. h>

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XBD-ERN-87 is applied, correcting an error in the strrecvfd structure.
The <stropts.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

<sys/ipc.h>
Purpose: XSl interprocess communication access structure.
Synopsis:  #i ncl ude <sys/ipc. h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.
<syslog.h>
Purpose: Definitions for system error logging.

Synopsis:  #i ncl ude <sysl| og. h>
Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/mman.h>

Purpose: Memory management declarations.
Synopsis:  #i ncl ude <sys/ mman. h>
Derivation: First released in Issue 4, Version 2.

Issue 7: Functionality relating to the Memory Protection and Memory Mapped Files
options is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

A Source Book from The Open Group (2010)



Headers Migration Headers

X8I

X8I

X8I

X8I

<sys/msg.h>

Purpose: XSI message queue structures.

Synopsis:  #i ncl ude <sys/nsg. h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/msg.h>.

This reference page is clarified with respect to macros and symbolic constants.

<sys/resource.h>

Purpose: Definitions for XSI resource operations.
Synopsis:  #i ncl ude <sys/resource. h>
Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/select.h>

Purpose: Select types.

Synopsis:  #i ncl ude <sys/sel ect. h>

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/sem.h>

Purpose: XSI semaphore facility.

Synopsis:  #i ncl ude <sys/sem h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/sem.h>.

This reference page is clarified with respect to macros and symbolic constants.

<sys/shm.h>

Purpose: XSI shared memory facility.

Synopsis:  #i ncl ude <sys/shm h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/shm.h>.

This reference page is clarified with respect to macros and symbolic constants.

The Authorized Guide to the Single UNIX Specification, Version 4 257



Headers Headers Migration

X8I

258

<sys/socket.h>
Purpose: Main sockets header.
Synopsis:  #i ncl ude <sys/socket. h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb5).

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the ssize_t
type.

The MSG_NOSIGNAL symbolic constant is added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <sys/types.h> for the size_t type is added.

<sys/stat.h>

Purpose: Data returned by the stat () function.

Synopsis:  #i ncl ude <sys/stat. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-161 is applied, updating the DESCRIPTION to clarify that the
descriptions of the interfaces should be consulted in order to determine which
structure members have meaningful values.

The fchmodat (), fstatat (), mkdirat (), mkfifoat (), mknodat (), and utimensat () functions
are added from The Open Group Technical Standard, 2006, Extended API Set Part
2.

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps, and the
futimens() function and the UTIME_NOW and UTIME_OMIT symbolic constants

are added.
<sys/statvfs.h>
Purpose: VES File System information structure.

Synopsis:  #i ncl ude <sys/statvfs. h>
Derivation: First released in Issue 4, Version 2.
Issue 7: The <sys/statvfs.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<sys/time.h>

Purpose: Time types.

Synopsis:  #i ncl ude <sys/tinme. h>
Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

A Source Book from The Open Group (2010)



Headers Migration

X8I

Headers

<sys/times.h>

Purpose: File access and modification times structure.

Synopsis: ~ #i ncl ude <sys/tines. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

<sys/types.h>

Purpose: Data types.

Synopsis:  #i ncl ude <sys/types. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #033 is applied, requiring key_t to be an

<sys/uio.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<sys/un.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

arithmetic type.
The Trace option types are marked obsolescent.
The clock_t and id_t types are moved from the XSI option to the Base.

Functionality relating to the Barriers, Spin Locks, Timers, and Threads options is
moved to the Base.

Definitions for vector I/O operations.
#i ncl ude <sys/ ui o. h>
First released in Issue 4, Version 2.

No functional changes are made in this issue.

Definitions for UNIX domain sockets.
#i ncl ude <sys/un. h>

First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCUb).

The value for {_POSIX_PATH_MAX]} stated in APPLICATION USAGE is updated
to 256.

<sys/utsname.h>

Purpose:
Synopsis:
Derivation:

Issue 7:

System name structure.
#i ncl ude <sys/ut snane. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 259



Headers Headers Migration

<sys/wait.h>
Purpose: Declarations for waiting.
Synopsis:  #i ncl ude <sys/wait. h>
Derivation: First released in Issue 3.
Included for alignment with the IEEE Std 1003.1-1988 (POSIX.1).

Issue 7: The waitid () function and symbolic constants for its options argument are moved to
the Base.

The description of the WNOHANG constant is clarified.

<tar.h>

Purpose: Extended tar definitions.

Synopsis:  #i ncl ude <tar.h>

Derivation: First released in Issue 3. Derived from the IEEE Std 1003.1-1988 (POSIX.1).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<termios.h>

Purpose: Define values for termios.

Synopsis:  #i ncl ude <termi os. h>

Derivation: First released in Issue 3.
Included for alignment with the .

Issue 7: Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality
relating to the IXANY symbol from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <sys/types.h> for the pid_t type is added.

<tgmath.h>

Purpose: Type-generic macros.

Synopsis:  #i ncl ude <t gmath. h>

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899:1999

standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #184 is applied, clarifying the functions
for which a corresponding type-generic macro exists with the same name as the
function.

<time.h>

Purpose: Time types.

Synopsis:  #i ncl ude <tine.h>
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The strftime_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

260 A Source Book from The Open Group (2010)



Headers Migration

OB TRC

OB XSI

The Authorized Guide to the Single UNIX Specification, Version 4

<trace.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<ulimit.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<unistd.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers

Functionality relating to the Timers option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

The description of getdate_err is expanded to state that it is unspecified whether
getdate_err is a macro or an identifier declared with external linkage, and whether
or not it is a modifiable lvalue.

Tracing.
#i ncl ude <trace. h>
First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.
The <trace.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

Ulimit commands.
#include <ulimt. h>
First released in Issue 3.

The <ulimit.h> header is marked obsolescent.

Standard symbolic constants and types.
#i ncl ude <unistd. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #026 is applied, clarifying the meanings
of the values -1, 0, and greater than 0 for constants for Options and Option
Groups, and making an undefined constant mean the same as the value —1.

Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV
constant.

Austin Group Interpretation 1003.1-2001 #166 is applied to permit an additional
compiler flag to enable threads.

Austin Group Interpretation 1003.1-2001 #178 is applied, clarifying the values
allowed for _POSIX2_CHAR_TERM.

SD5-XBD-ERN-41 is applied, adding the _POSIX2_SYMLINKS constant.

SD5-XBD-ERN-77 is applied, moving _POSIX_VDISABLE out of Constants for
Options and Option Groups, since its value does not follow the convention for
those constants.

Symbols to support the UUCP Utilities option are added.

The variables for the supported programming environments are updated to be V7.

261



Headers

OB

X8I

262

<utime.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<utmpx.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<wchar.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

The LEGACY and obsolescent symbols are removed.

The faccessat(), fchownat(), fexecve(), linkat(), readlinkat(), symlinkat(), and
unlinkat () functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The _POSIX_TRACE* constants from the Trace option are marked obsolescent.

The _POSIX2_PBS* constants from the Batch Environment Services and Ultilities
option are marked obsolescent.

Functionality relating to the Asynchronous Input and Output, Barriers, Clock
Selection, Memory Mapped Files, Memory Protection, Realtime Signals Extension,
Semaphores, Spin Locks, Threads, Timeouts, and Timers options is moved to the
Base.

Functionality relating to the Thread Priority Protection and Thread Priority
Inheritance options is changed to be Non-Robust Mutex or Robust Mutex Priority
Protection and Non-Robust Mutex or Robust Mutex Priority Inheritance,
respectively.

The following symbolic constants are added:
_SC_THREAD_ROBUST_PRIO_INHERIT
_SC_THREAD_ROBUST_PRIO_PROTECT

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

Access and modification times structure.
#i ncl ude <utinme. h>
First released in Issue 3.

The <utime.h> header is marked obsolescent.

User accounting database definitions.
#i ncl ude <ut npx. h>
First released in Issue 4, Version 2.

No functional changes are made in this issue.

Wide-character handling.
#i ncl ude <wchar. h>
First released in Issue 4.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)



Headers Migration Headers

<wctype.h>

Purpose: Wide-character classification and mapping utilities.
Synopsis:  #i ncl ude <wctype. h>

Derivation: First released in Issue 5. Derived from the .

Issue 7: The *_I() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

<wordexp.h>

Purpose: Word-expansion types.

Synopsis:  #i ncl ude <wor dexp. h>

Derivation: First released in Issue 4. Derived from the .

Issue 7: The obsolescent WRDE_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

The Authorized Guide to the Single UNIX Specification, Version 4 263



Headers Migration

264 A Source Book from The Open Group (2010)



14.1

14.2

Chapter 14

' ISO C Migration

This chapter is by Finnbarr P. Murphy. At the time of writing, Finnbarr was a software engineer in the
Business Critical Systems Group (BCSG) at Compaq Computer Corporation in Nashua, New Hampshire.

Introduction

The original ISO/IEC C language programming standard (the ) was adopted by the
International Organization for Standardization (ISO) and the International Electotechnical
Commission (IEC) in 1990. Subsequently, two technical corrigenda (TC1 and TC2) were
approved together with the normative , Multibyte Support Extension.!

At the end of 1993, there was general agreement that work should start on the next revision of
the standard. The revised standard (C99) was sent for FCD ballot in August 1998, and adopted
by ISO/IEC in 1999 as the ISO/IEC 9899: 1999 standard.

This chapter is intended to provide the reader with a good, but not exhaustive, overview of the
differences between the two revisions of the standard. Thus the reader is strongly advised to
reference the ISO/IEC 9899: 1999 standard for specific details.

Language Changes

A significant number of changes occurred in the standard, including new keywords and types,
type qualifiers, better floating-point support, and support for complex numbers.

14.2.1 New Keywords

The following new keywords were defined:
e inline
e restrict
e Bool
« _Complex
e _Imaginary

 longlong

1.

Information about the ISO C Working Group (JTC1/SC22/WG14) can be foundnabld.dkuug.dk/JTC1/SC22/WG14/

The Authorized Guide to the Single UNIX Specification, Version 4 265



Language Changes |SO C Migration

14.2.2 New Types
Two new types were added:
e _Bool
* long long
The long long type is an integer type with at least 64 bits of precision.

Note: In some programming models such as LP64 and ILP64, long long and long are equivalent. In
the others—for example, LLP64—long long is larger than long.

14.2.3 Type Qualifiers

Type qualifiers are now idempotent. If a type qualifier appears more than once (either directly or
indirectly) in a type specification, it is as if it appeared only once. Thus const const int fpm; and
const int fpm; are equivalent.

restrict is a new type qualifier which enables programs to be written so that compilers can
produce significantly faster executables. It is intended to be used only with pointers. Objects
referenced through a restrict-qualified pointer are special in that all references to the object must
directly or indirectly use the value of the restrict-qualified pointer. It is intended to facilitate
better alias analysis by compilers. In the absence of this qualifier, other pointers can alias the
object and prevent compiler optimizations since a compiler may not be able to determine that
different pointers are being used to reference different objects. Note that a restricted pointer and
a non-restricted pointer can be aliases.

A number of function definitions were modified to take advantage of the restrict qualifier. A
typical example is the fopen () function which was changed from:

FILE *fopen(const char *fil ename, const char *node);
to:

FILE *fopen(const char *restrict filenane,
const char *restrict node);

Changed functions include:

feetpos()  freopen() memepy () strncpy() vwprintf()
feets() fwprintf()  setbuf() strxfrm () westod ()
feetws () fuwrite() setobuf()  swprintf()  westol()

fopen()  fwscanf() strcat () swscanf() westombs ()

fouts() mbstowes () strepy() ofwprintf()  westoul ()
fread () mbtowe () strncat()  vswprintf()  wprintf()

14.2.4 Boolean

The standard now supports a boolean type _Bool which is an integer type which can hold either
Oorl.

The header <stdbool.h> also defines the macro bool which expands to _Bool, true which
expands to the integer constant 1, and false which expands to the integer constant 0.

266 A Source Book from The Open Group (2010)



ISO C Migration Language Changes

14.2.5

14.2.6

14.2.7

Universal Character Names

Prior to this revision of the standard, “native” characters, in the form of multibyte and wide
characters, could be used in string literals and character constants, but not as part of an
identifier.

This standard introduced the concept of a universal character name (UCN) that may be used in
identifiers, character constants, and string literals to designate characters that are not in the basic
character set.

The two forms of a UCN are:
\'unnnn where nnnn is hex-quad
\ Unnnnnnnn where nnnnnnnn is hex-quad hex-quad

A hex-quad consists of 4 hexadecimal digits.

The UNC \Unnnnnnnn designates the character whose eight-digit short identifier as specified
by the ISO/IEC 10646-1: 2000 standard is nnnnnnnn.

Similarly, the UCN \unnnn can be used to designate a given character whose four-digit short
identifier as specified by the ISO/IEC 10646-1:2000 standard is nnnn (and whose eight-digit
short identifier is 0000nnnmn).

There are a number of disallowed characters; that is, those in the basic character set, and code
positions reserved in the ISO/IEC 10646-1:2000 standard for control and DELETE characters
and UTF-16.

Note: A strictly conforming program may use only the extended characters listed in Annex I
(Universal Character Names for Identifiers) and may not begin an identifier with an extended
digit. Also, use of native characters in comments has always been strictly conforming, though
what happens when such a program is printed in a different locale is unspecified.

inline
The inline keyword is intended to provide users with a portable way to suggest to

implementations that inlining a function might result in program optimizations.

It is a function-specifier that can be used only in function declarations. It was adopted from C++
but extended in such a way that it can be implemented with existing linker technology. The
translation unit that contains the definition of an inline function is the unit that provides the
external definition for the function. If a function is declared inline in one translation unit, it need
not be declared inline in every other translation unit.

Predefined Identifiers
Predefined identifiers are variables that have block scope.

The standard defined one predefined identifier __func__ which is declared implicitly by the
compiler as if, immediately following the opening brace of each function definition, the
following declaration was included in the source code:

static const char _ func_ [] = "function-nane";

where function-name is the name of the lexically-enclosing function. This enables a function name
to be obtained at runtime.

The assert () macro now includes the identifier __func__ in the output to stderr:

The Authorized Guide to the Single UNIX Specification, Version 4 267



Language Changes |SO C Migration

voi d assert(scal ar expression);

Note that the parameter type of the assert() macro was also changed from int to scalar.

14.2.8 Compound Literals

Compound literals (also known as anonymous aggregates) provide a mechanism for specifying
constants of aggregate or union type. This eliminates the requirement for temporary variables
when an aggregate or union value may only be needed once. Compound literals are primary
expressions which can also be combined with designated initializers to form an even more
convenient aggregate or union constant notation.

Compound literals are created using the notation:
( type-name ) { initializer-list }
For example:

int *ap = (int a[]) {1. 2, 3 };

Note that a trailing comma before the closing brace is permitted.

14.2.9 Designated Initializers

Designated initializers provide a mechanism for initializing aggregates such as sparse arrays, a
common requirement in numerical programming. This mechanism also allows initialization of
sparse structures and initialization of unions via any member, regardless of whether or not it is
the first member.

Initializers have a named notation for initializing members. For array elements, the element is
designated by [const-expression], for struct and union members by a dot member-name notation.

For example:

struct s { int a; int b; };
struct s nystruct = {.b = 2}; /1 initialize nmenber b
struct {int a[3], b[3]} W] ={ [0].a = {1}, [1].b =2 };

If an initializer is present, any members not explicitly set are zeroed out. Initializers for auto
aggregates can be non-constant expressions.

14.3 Decimal Integer Constants

The default type of a decimal integer constant is either int, long, or long long (previously int,
long, and unsigned long), depending on which type is large enough to hold the value without
overflow.

The standard added LL to specify long long, and ULL to specify unsigned long long.

268 A Source Book from The Open Group (2010)



ISO C Migration Decimal Integer Constants

14.3.1

14.4

14.4.1

14.4.2

14.4.3

String Literals

The standard defines a number of macros as expanding into character string literals that are
frequently needed as wide strings.

One example is the format specifier macros in <inttypes.h>. Rather than specifying two forms
of each macro, one character string literal and one wide string literal, the decision was made to
define the result of concatenating a character string literal and a wide string literal as a wide
string literal.

Implicit Declarations

Implicit declaration of functions is no longer permitted by the standard. There must be a least
one type specifier otherwise a diagnostic is issued. However, after issuing the diagnostic, an
implementation may choose to assume an implicit declaration and continue translation in order
to support existing source code.

For example, the declaration fpm(); was valid in previous revisions of the standard (equivalent
to int fpm();) but is now invalid.

sizeof

With the addition of variable length arrays, the sizeof operator is a constant expression only if the
type of the operand is not a variable length array type.

Note: It is still possible to determine the number of elements in a variable length array vla with
sizeof (vla) /sizeof (vla[0]).

Multiplicative Operators

In previous revisions of the standard, division of integers involving negative operands could
round upward or downward in an implementation-defined manner. The standard now
mandates that, as in Fortran, the result always truncates toward zero.

For example, both of the following truncate towards zero:

-22/ 7 =-3
-22 %7 = -1

This was done to facilitate porting of code from Fortran to C.

Enumeration Specifiers

A common extension to many C implementations is to allow a trailing comma after the list of
enumeration constants. The standard now permits this.

The Authorized Guide to the Single UNIX Specification, Version 4 269



Variable Length Array ISO C Migration

14.5 Variable Length Array

A new array type, called a variable length array type, was added to the standard. The number of
elements specified in the declaration of a variable length array type is not specified by the source
code; rather it is a computed value determined at runtime.

Multi-dimensional variable-length arrays are permitted.

Some things cannot be declared as a variable length array type, including:
» File scope identifiers
 Arrays declared using either static or extern storage class specifiers
e Structure and union members

The rationale behind this new array type was that some standard method to support runtime
array sizing was considered crucial for C’s acceptance in the numerical computing world. Before
this revision of the standard, the size expression was required to be an integer constant
expression.

14.5.1 Array Declarations

The static storage class specifier and the type-qualifiers restrict, const, or volatile can now be
used inside the square brackets of an array type declaration, but only in the outermost array
type derivation of a function parameter.

int foo(const int a[static 10]);

In the above example, the static keyword will guarantee that the pointer to the array a is not
NULL, and points to an object of the appropriate type.

14.5.2 Array Type Compatibility

Array type compatibility was extended so that variable length arrays are compatible with both
an array of known constant size and an array with an incomplete type.

14.5.3 Incomplete Array Structure Members

The last member of a structure with more than one member can now be an incomplete array
type. This incomplete member is called a flexible array member.

Consider the following example

struct s { int n;
doubl e d[];

b
size_t sz = sizeof ( struct s );
struct s *sp = malloc(sz + 10);

The structure pointer sp behaves as if the structure s had been declared as

struct s { int n;
doubl e d[ 10];

s

The size of the structure is equal to the offset of the last element of an otherwise identical

270 A Source Book from The Open Group (2010)



ISO C Migration Variable Length Array

14.5.4

14.5.5

14.5.6

14.6

structure that replaces the flexible array member with an array of unspecified length. When a
".’ ora’->" operator point to a structure with a flexible array member and the right operand
names that member, it behaves as if that member were replaced with the longest array with the
same element type that would not make the structure larger than the object being accessed.

The offset of the array remains that of the flexible array member, even if this would differ from
that of the replacement array. If this array would have no elements, it behaves as if it had one
element. However, behavior is undefined if any attempt is made to access that element or to
generate a pointer one past it.

Blocks

A common coding practice is to always use compound statements for every selection and
iteration statement to guard against inadvertent problems when changes are made to the source
code.

Because this can lead to surprising behavior in connection with certain uses of compound
literals, the concept of a block was expanded in this revision of the standard.

As in C++, all selection and iteration statements, and their associated substatements, are now
defined to be blocks, even if they are not also compound statements. If compound literals are
defined in selection or iteration statements, their lifetimes are limited to the implied enclosing
block.

The for Statement

The standard now permits loop counter variables as part of a for statement. Such a variable is in
a new scope (so it does not affect any other variable of the same name), is destroyed at the end of
the loop, and must have auto or register storage class.

for (int i =0; i < 10; i++)
printf("Loop nunber: %\n", i);

errno

For underflow, errno is no longer required to be set to [EDOM] or [ERANGE].

Comments

Support for / / -style comments was added due to their utility and widespread existing practice,
especially in dual C/C++ translators. This is a quiet change which could cause different
semantics between this standard and C89. Consider the following example:

a=>b//*divisor:*/ f
+ e;

According to this standard this is the same as:
a=>b+ e
but in previous revisions of the standard it was the same as:

a=b/ f + e

The Authorized Guide to the Single UNIX Specification, Version 4 271



Comments |SO C Migration

14.6.1 Hexadecimal Floating-Point Constants

Because hexadecimal notation more clearly expresses the significance of floating constants, the
standard now supports hexadecimal floating-point constants.

The binary-exponent part is required, instead of being optional as it is for decimal notation, to
avoid ambiguity resulting from an ' f’ suffix being mistaken as a hexadecimal digit. The
exponent indicates the power of 2 by which the significant part is to be scaled.

14.6.2 Predefined Macros

New predefined macros include:

__STDC_VERSION_ _ Defined to be 199901L to indicate the current revision of the
standard.
__STDC_HOSTED_ _ Defined as 1 if the implementation is hosted; otherwise, 0.

14.6.3 Source File Inclusion

The number of significant characters in header and source file names was raised from six to
eight, and digits are now allowed.

14.6.4 Translation-Time Arithmetic

The standard now mandates that translation-time arithmetic be done using intmax_t or
uintmax_t, which must comprise at least 64 bits and must match the execution environment.

Previously, a translator was permitted to evaluate expressions using the long integer or
unsigned long integer arithmetic native to the translation environment.

14.6.5 Minimum Maximum Line Length

The minimum maximum line length was increased from 254 to 4095.

14.6.6 Case-Sensitive Identifiers

All identifiers are now case-sensitive. In previous revisions of the standard, it was
implementation-defined whether an implementation ignored the case of external identifiers.

14.6.7 #line Directive

This directive now allows the specification of a line number up to 2**31-1. Previously the limit
was 32767.

272 A Source Book from The Open Group (2010)



ISO C Migration Comments

14.6.8

14.6.9

14.6.10

14.6.11

14.6.12

Empty Argument Macros

Empty arguments are now explicitly allowed. In previous revisions of the standard, this resulted
in undefined behavior. Stringification (# operator) of an empty argument yields the empty
string, concatenation (## operator) of an empty argument with a non-empty argument produces
the non-empty argument, and concatenation of two empty arguments produces nothing.

Pragmas

Some pragma directives have been standardized. Directives whose first preprocessing token is
STDC are reserved for standardized directives.

As an alternative syntax for a pragma directive, the preprocessing operator _Pragma is specified.
This has the advantage that it can be used in a macro replacement list.

Translation Limits
A number of the program translation limits were significantly increased.

The number of significant initial characters in an internal identifier or a macro name was
increased from 31 to 63.

The number of significant characters in an external identifier has increased from 6 to 31 case-
sensitive characters.

Note that each universal character name (UCN) specifying a short identifier of 0000FFFF or less
is considered to be 6 characters, while a long UCN counts as 10 characters.

While an implementation is not obliged to remember more than the first 63 characters of an
identifier with internal linkage, or the first 31 characters of an identifier with external linkage,
the programmer is effectively prohibited from intentionally creating two different identifiers that
are the same within the appropriate length.

The minimum maximum limit of cases in a switch statement was increased to 1 023.

Token Pasting

The standard replaced non-digit with identifier-non-digit in the grammar to allow the token
pasting operator, ##, to work as expected with characters which are not part of the basic
character set.

Variadic Macros

The standard extended the functionality of the punctuator "..." (ellipsis; denoting a variable
number of trailing arguments) to function-like macros. For replacement, the variable arguments
(including the separating commas) are “collected” into one single extra argument that can be
referenced as _ _VA_ARGS_ _ within the macro’s replacement list.

For example:
#define MyLog(...) fprintf(stderr, _ VA ARGS )

mai n()

{

int array_bound = 10;

The Authorized Guide to the Single UNIX Specification, Version 4 273



Comments |SO C Migration

int array_index = 11;

MyLog("ERROR: | ndex out of bound: % %\n", array_index,
array_bound);

There must be at least one argument to match the ellipsis. This requirement avoids problems
that might occur when the trailing arguments are included in a list of arguments to another
macro or function.

14.6.13 va_copy()

In previous revisions of the standard, it was not possible to backtrack and examine one or more
arguments a second time when processing a variable argument list. The only way to do this was
to reprocess the variable argument list.

The va_copy() macro provides a mechanism for copying the va_list object used to represent
processing of the arguments. Calling the va_copy() macro exactly duplicates the va_list object.

Note: A separate call to the va_end() macro is required to remove the new va_list object.

14.7 Headers

The following new headers were added to the standard:

<complex.h> Defines a number of macros and functions for use with the three complex
arithmetic types defined in the standard.

<fenv.h> Defines a number of types, macros, and functions that can be used to test,
control, and access an implementation’s floating-point environment.

<inttypes.h> Defines a type and a number of macros and functions for manipulating
integers; <stdint.h> is a subset of this header.

<stdbool.h> Defines a number of macros for accessing the new Boolean type _Bool and
writing Boolean tests.

<tgmath.h> Defines a large number of type-generic macros that invoke the correct math
function from <math.h> or from <complex.h> depending upon their
argument types.

274 A Source Book from The Open Group (2010)



ISO C Migration Integer Types

14.8

14.8.1

14.8.2

14.8.3

Integer Types

The purpose of the <inttypes.h> header is to provide a set of integer types whose definitions are
consistent across platforms. Consistent use of these integer types should greatly increase the
portability of source code across platforms.

The header <stdint.h> is a subset of <inttypes.h> and may be more suitable for use in
freestanding environments, which might not support the formatted I/O functions. It declares
sets of integer types having specified widths and corresponding macros that specify limits of the
declared types and construct suitable constants.

The following categories of integer types are defined:
 Types having exact widths

» Types having at least certain specified widths

Fastest types having at least certain specified widths
» Types wide enough to hold pointers to objects
 Types having greatest width

Exact-Width Integer Types

The typedef name intN_t designates a signed integer type with width N bits, no padding bits,
and a two’s complement representation. The typedef name uintN_t designates an unsigned
integer type with width N.

For example, int16_t is an unsigned integer type with a width of exactly 16 bits.

Exact-width types are optional. However, if an implementation provides integer types with
widths of 8, 16, 32, or 64 bits, it must define the corresponding typedef names.

Minimum-Width Integer Types

The typedef names int_leastN_t and uint_leastN_t, respectively, designate signed and unsigned
integer types with a width of at least N bits, such that no signed integer type with lesser size has
at least the specified width.

For example, uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.
The following types are mandatory:

int_least8_t int_least32_t uint_least8 t uint_least32_t
int_leastl6_t int least64 t wuint leastl6_t wuint least64 t

Fastest Minimum-Width Integer Types

The typedef names int_fastN_t and uint_fastN_t, respectively, designate the (usually) fastest
signed and unsigned integer types with a width of at least N bits.

The following types are mandatory:

int_fast8 t int_fast32_t uint_fast8_t uint_fast32_t
int_fastl6_t int faste4 t wuint fastl6_t wuint faste4_t

The Authorized Guide to the Single UNIX Specification, Version 4 275



Integer Types |SO C Migration

14.8.4 Integer Types Capable of Holding Object Pointers

The optional intptr_t and uintptr_t types, respectively, designate a signed and unsigned integer
type with the property that any valid pointer to void can be converted to this type, then
converted back to a pointer to void and the result will compare equal to the original pointer.

14.8.5 Greatest-Width Integer Types

The intmax_t and uintmax_t types, respectively, designate a signed integer type capable of
representing any value of any signed integer type, and an unsigned integer type capable of
representing any value of any unsigned integer type.

For each type declared in <stdint.h> conversion macros, which expand to the correct format
specifiers, are defined for use with the formatted input/output functions such as fprintf() and

fscanf().

The fprintf() macros for signed integers are:

PRIAFASTN PRIAMAX  PRIAPRT PRILEASTN  PRIIN
PRIALEASTN  PRIAN PRIIFASTN  PRIIMAX PRIiPRT

The PRId macros each expand to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the types int8_t, int16_t, int32_t, or int64_t,
respectively.

The PRIALEAST macros each expand to a string literal suitable for use as a d print conversion
specifier, plus any needed qualifiers, to convert values of the types int_least8_t, int_least16_t,
int_least32_t, or int_least64_t, respectively.

The PRIAFAST macros each expand to a string literal suitable for use as a d print conversion
specifier, plus any needed qualifiers, to convert values of the types int_fast8_t, int_fast16_t,
int_fast32_t, or int_fast64_t, respectively.

The PRIAMAX macro expands to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the type intmax_t.

The PRIAPTR macro expands to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the type intptr_t.

The following example shows part of one possible implementation of the these macros in an

LP64 programming model:
#define PRI d8 " hhd"
#define PRI d16 " hd"
#def i ne PRI d32 "d"
#def i ne PRI d64 "l d"
#def i ne PRI dFAST8 " hhd"

#def i ne PRI dFAST16 "hd"
#def i ne PRI dFAST32 "d"
#def i ne PRI dFAST64 "l d"

#defi ne PRI dLEAST8 “hhd"
#define PRI dLEAST16 "hd"
#define PRI dLEAST32 "d"
#define PRI dLEAST64 "Id"

Corresponding fprintf() macros are defined for unsigned integers (PRlo, PRIu, PRIX, and PRIX).

276 A Source Book from The Open Group (2010)



ISO C Migration Integer Types

14.8.6

14.8.7

For fscanf(), the macro names start with SCN instead of PRN. (SCNd and SCNi for signed
integers; SCNo, SCNu, SCNx for unsigned integers.)

A new structure type imaxdiv_t is defined. It is the type of structure returned by imaxdiv().
The following function computes the absolute value of an integer j:

intmax_t inmaxabs(intmax_t j);

The following function computes both the quotient and remainder in a single operation:

i maxdiv_t inmaxdiv(intmax_t numer, intmax_t denon);

The following functions are equivalent to the strtol family of functions, except that the initial
portion of the string is converted to intmax_t and uintmax_t representation, respectively:

intmax_t strtoi nax(const char *restrict nptr,
char **restrict endptr, int base);

uintmax_t strtounmax(const char *restrict nptr,
char **restrict endptr, int base);

The following functions are equivalent to the wcstol family of functions, except that the initial
portion of the wide string is converted to intmax_t and uintmax_t representation, respectively:

i nt max_t wcstoi max(const wchar _t *restrict nptr,
wchar t **restrict endptr, int base);

ui nt max_t wecst ounmax(const wchar _t *restrict nptr,
wchar t **restrict endptr, int base);

Limits of Specified-Width Integer Types

The standard specifies the minimum and maximum limits for all of the types declared in the
<stdint.h> header.

For example, the minimum value of an exact-width unsigned integer type is {UINTn_MAX},
where 7 is an unsigned decimal integer with no leading zeros, whose value is exactly 2*n-1.

Macros

The macros INTN_C() and UINTN_C() expand to a signed integer constant whose type and
value is int_leastN_t, and an unsigned integer constant whose type and value is uint_leastN_t,
respectively.

The macro INTMAX_C() expands to a integer constant whose type is intmax_t, and
UINTMAX_C() expands to an unsigned integer constant whose type uintmax_t.

The Authorized Guide to the Single UNIX Specification, Version 4 277



Complex Numbers |SO C Migration

149 Complex Numbers

Support for complex numbers and complex number arithmetic is new, and was added as part of
the effort to make the C language more attractive for general numerical programming. The
underlying implementation of the complex types is explicitly stated to be Cartesian, rather than
polar, for consistency with other programming languages. Thus values are interpreted as
radians, not degrees.

The header <complex.h> contains the macro definitions and function declarations that support
complex arithmetic.

Two new type specifiers were defined:

_Complex

_Imaginary (Only if an implementation supports a pure imaginary type.)

A new type qualifier complex (actually a macro which expands to _Complex) is used to denote a
number as being a complex number.

Three complex types were defined:
« float complex
+ double complex
 long double complex

The corresponding real type is the type obtained by deleting the type qualifier complex from the
complex type name.

A complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the
real part, and the second element to the imaginary part, of the complex number.

There is no special syntax for constants; instead there is a new macro _Complex_I, which has a
complex value whose real part is zero and whose imaginary part is x. Note that
_Complex_I*_Complex_I has a value of —1, but the type of that value is complex.

The standard reserves the keyword _Imaginary for use as a type-specifier in conjunction with
the pure imaginary type. The macros imaginary and Imaginary_I are defined only if an
implementation supports a pure imaginary type. Such support is optional. See Annex G of the
standard for further details. If defined, they expand to _Imaginary and a constant expression of
type const float _Imaginary with the value of the imaginary unit.

The macro I expands to _Imaginary_I, if defined, else to _Complex_I. Thus a complex number
constant (3.0 +4.0i) could be written as either 3.0+4.0* or 3.0+4.0 *_Complex_I.

The choice of ' | * instead of i’ for the imaginary unit was because of the widespread use of
the identifier ' i * for other purposes. A program can use a different identifier (for example,’ z’ )
for the imaginary unit by undefining’ | * and defining’ z’ as follows:

#i ncl ude <conpl ex. h>
#undef |
#define z _Imaginary_ z

Annex G, which is marked informative, specifies complex arithmetic intended to be compatible
with the IEC 60559: 1989 standard real floating-point arithmetic, This annex was designated as
informative because of insufficient prior art for normative status. An implementation claiming
such conformance should define __STDC_IEC_559_COMPLEX to be 1.

The pragma STDC CX_LIMITED_RANGE can be used to indicate (ON) that the usual

278 A Source Book from The Open Group (2010)



ISO C Migration Complex Numbers

14.9.1

14.9.2

mathematical formulas for complex arithmetic may be used. Such formulas are problematic
because of overflow, underflow, and handling of infinities.

The following new functions relate to complex arithmetic.

Trigonometric Functions

The complex arc cosine functions compute the complex arc cosine of z, with branch cuts outside
the interval [-1,+1] along the real axis.

doubl e conpl ex cacos(doubl e conplex z);
fl oat conpl ex cacosf(float conplex z);
| ong doubl e conpl ex cacosl (1 ong doubl e conpl ex z);

The complex arc sine functions compute the complex arc sine of z, with branch cuts outside the
interval [-1,+1] along the real axis.

doubl e conpl ex casi n(doubl e conpl ex z);
fl oat conpl ex casinf(float conplex z);
| ong doubl e conpl ex casinl (I ong doubl e conplex z);

The complex arc tangent functions compute the complex arc tangent of z, with branch cuts
outside the interval [-i,+i] along the imaginary axis.

doubl e conpl ex catan(doubl e conplex z);
fl oat conplex catanf(float conplex z);
| ong doubl e conpl ex catanl (1 ong doubl e conpl ex z);

The complex cosine functions compute the complex cosine of z.

doubl e conpl ex ccos(doubl e conpl ex z);
fl oat conplex ccosf(float conplex z);
| ong doubl e conpl ex ccosl (I ong doubl e conpl ex z);

The complex sine functions compute the complex sine of z.

doubl e conpl ex csin(doubl e conplex z);
fl oat conplex csinf(float conplex z);
| ong doubl e conpl ex csinl (1 ong double conplex z);

The complex tangent functions compute the complex tangent of z.

doubl e conpl ex ctan(doubl e conpl ex z);
fl oat conplex ctanf(float conplex z);
| ong doubl e conpl ex ctanl (I ong doubl e conpl ex z);

Hyperbolic Functions

The complex arc hyperbolic cosine functions compute the complex arc hyperbolic cosine of z,
with a branch cut at values less than 1 along the real axis.

doubl e conpl ex cacosh(doubl e conpl ex z);
float conplex cacoshf(float conplex z);
| ong doubl e conpl ex cacoshl (1 ong doubl e conpl ex z);

The complex arc hyperbolic sine functions compute the complex arc hyperbolic sine of z, with
branch cuts outside the interval [-i,+i] along the imaginary axis.

The Authorized Guide to the Single UNIX Specification, Version 4 279



Complex Numbers |SO C Migration

doubl e conpl ex casi nh(doubl e conpl ex z);
float conplex casinhf(float conplex z);
| ong doubl e conpl ex casinhl (1 ong doubl e conpl ex z);

The complex arc hyperbolic tangent functions compute the complex arc hyperbolic tangent of z,
with branch cuts outside the interval [-1,+1] along the real axis.

doubl e conpl ex cat anh(doubl e conpl ex z);
float conplex catanhf(float conplex z);
| ong doubl e conpl ex catanhl (1 ong doubl e conpl ex z);

The complex hyperbolic cosine functions compute the complex hyperbolic cosine of z.

doubl e conpl ex ccosh(doubl e conpl ex z);
float conplex ccoshf(float conplex z);
| ong doubl e conpl ex ccoshl (1 ong doubl e conpl ex z);

The complex hyperbolic sine functions compute the complex hyperbolic sine of z.

doubl e conpl ex csi nh(doubl e conpl ex z);
float conplex csinhf(float conplex z);
| ong doubl e conpl ex csinhl (1 ong doubl e conplex z);

The complex hyperbolic tangent functions compute the complex hyperbolic tangent of z.

doubl e conpl ex ctanh(doubl e conpl ex z);
float conplex ctanhf(float conplex z);
| ong doubl e conpl ex ctanhl (1 ong doubl e conplex z);

14.9.3 Exponential and Logarithmic Functions
The complex exponential functions compute the complex base-e exponential of z.

doubl e conpl ex cexp(doubl e conplex z);
float conplex cexpf(float conplex z);
| ong doubl e conpl ex cexpl (I ong doubl e conpl ex z);

The complex natural logarithm functions compute the complex natural logarithm of z, with a
branch cut along the negative real axis.

doubl e conpl ex cl og(doubl e conpl ex z);
float conplex clogf(float conplex z);
| ong doubl e conpl ex clogl (I ong doubl e conpl ex z);

14.9.4 Power and Absolute-Value Functions
The complex absolute value functions compute the modulus of x.

doubl e conpl ex cabs(doubl e conpl ex x);
float conpl ex cabsf(float conplex x);
| ong doubl e conpl ex cabsl (I ong doubl e conpl ex x);

The complex power functions compute the complex power function x**y, with a branch cut for
the first parameter along the negative real axis.

doubl e conpl ex cpow doubl e conpl ex x, double conplex y);
float conplex cpowf (float conplex x, float conplex y);

280 A Source Book from The Open Group (2010)



ISO C Migration Complex Numbers

14.9.5

| ong doubl e conpl ex cpow (I ong doubl e conpl ex x,
| ong doubl e conpl ex y);

The complex square root functions compute the complex square root of z, with a branch cut
along the negative real axis.

doubl e conpl ex csqrt (doubl e conplex z);
float conplex csqrtf(float conplex z);
| ong doubl e conpl ex csqrtl (1l ong doubl e conplex z);

Manipulation Functions

The complex argument functions compute the argument of z, with a branch cut along the
negative real axis.

doubl e carg(doubl e conpl ex z);
float cargf(float conplex z);
| ong doubl e cargl (I ong doubl e conpl ex z);

The complex imaginary functions compute the imaginary part of z.

doubl e ci mag(doubl e conplex z);
float cimagf(float conplex z);
| ong doubl e ci magl (1 ong doubl e conpl ex z);

The complex conjugate functions compute the complex conjugate of z, by reversing the sign of
its imaginary part.

doubl e conpl ex conj (doubl e conpl ex z);
float conplex conjf(float conplex z);
| ong doubl e conpl ex conjl (I ong double conplex z);

The complex projection functions compute a projection of z onto the Riemann sphere.

doubl e conpl ex cproj (doubl e conplex z);
float conplex cprojf(float conplex z);
| ong doubl e conpl ex cprojl (long double conplex z);

The complex real functions compute the real part of z.

doubl e creal (doubl e conplex z);
float creal f(float conplex z);
| ong doubl e creall (1 ong double conplex z);

Note that no errors are defined for any of the above functions.

The Authorized Guide to the Single UNIX Specification, Version 4 281



Other Mathematical Changes |SO C Migration

14.10 Other Mathematical Changes

The standard extended the mathematical support via <math.h> by providing versions of
functions to support float and long double as well as the existing double floating type functions.

The functions ecvt (), fcvt(), and gcvt() were dropped from the standard since their capability is
available using the sprintf() function.

The pragma STDC FP_CONTACT indicates to an implementation whether it is allowed (ON) or
disallowed (OFF) to contract expressions; that is, evaluated as though an expression is an atomic
operation, thereby omitting certain rounding errors.

The macro NAN is defined only if an implementation supports quiet NaNs.

14.10.1 Classification Macros

The following are defined for use with classification macros:

FP_NAN The floating-point number x is “Not a Number”.
FP_INFINITE The value of the number is either plus or minus infinity.
FP_ZERO The value of the number is either plus or minus zero.
FP_SUBNORMAL The number is in denormalized format.

FP_NORMAL There is nothing special about the number.

The macro fpclassify () classifies its argument as either NaN, infinite, normal, subnormal, zero, or
into another implementation-defined category.

int fpclassify(real-floating x);

The macro isfinite() determines whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN).

int isfinite(real-floating x);

The macro isinf() determines whether its argument value is an infinity (positive or negative).
int isinf(real-floating x);

The macro isnam () determines whether its argument value is a NaN.

int isnan(real -floating x);

The macro isnormal() determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN).

int isnormal (real -floating x);
The macro signbit () determines whether the sign of its argument value is negative.

int signbit(real-floating x);

282 A Source Book from The Open Group (2010)



ISO C Migration Other Mathematical Changes

14.10.2 Trigonometric Functions
The following functions compute the arc cosine, arc sin, and arctan of x, respectively:

float acosf(float x);

| ong doubl e acosl (I ong doubl e x);
float asinf(float x);

| ong doubl e asinl (I ong double x);
| ong doubl e tanl (1 ong doubl e x);

The following functions compute the arc tangent of v /x:

float atan2f(float y, float x);
| ong doubl e atan2l (1 ong double y, |ong double x);

The following functions compute the cosine, sin, and tangent of x, respectively:

float cosf(float x);
| ong doubl e cosl (1 ong doubl e x);
float sinf(float Xx);
| ong doubl e sinl (long double x);
float tanf(float Xx);
| ong doubl e tanl (1 ong doubl e x);

14.10.3 Hyperbolic Functions
The following functions compute the arc hyperbolic cosine of x:

float acoshf(float Xx);
| ong doubl e acoshl (1 ong doubl e x);

The following functions compute the arc hyperbolic sine of x:

float asinhf(float x);
| ong doubl e asinhl (1 ong double x);

The following functions compute the arc hyperbolic tangent of x:

float atanhf(float Xx);
| ong doubl e at anhl (1 ong doubl e x);

The following functions compute the hyperbolic cosine of x:

float coshf(float x);
| ong doubl e coshl (I ong doubl e x);

The following functions compute the hyperbolic sine of x:

float sinhf(float x);
| ong doubl e sinhl (I ong double x);

The following functions compute the hyperbolic tangent of x:

float tanhf(float x);
| ong doubl e tanhl (I ong doubl e x);

The Authorized Guide to the Single UNIX Specification, Version 4 283



Other Mathematical Changes |SO C Migration

14.10.4 Exponential and Logarithmic Functions
The following functions compute the base-e exponential of x:

float expf(float x);
| ong doubl e expl (1 ong doubl e x);

The following functions compute the base-2 exponential of x:

doubl e exp2(doubl e x);
float exp2f(float x);
| ong doubl e exp2l (I ong doubl e x);

The following functions compute the base-e exponential of (x—1):

fl oat expnilf(float Xx);
| ong doubl e expnil (1 ong doubl e Xx);

The following functions break a floating-point number into a normalized fraction and an
integral power of 2:

float frexpf(float value, int *exp);
| ong doubl e frexpl (1 ong doubl e val ue, int *exp);

The following functions extract the exponent of x:

int ilogbf(float x);
int ilogbl(long double x);

The following functions multiply a floating-point number by an integral power of 2:

float |dexpf(float x, int exp);
| ong doubl e | dexpl (1 ong double x, int exp);

The following functions compute the natural logarithm of x:

float |ogf(float x);
| ong doubl e | ogl (I ong doubl e x);

The following functions compute the base-10 logarithm of x:

float [o0glOf (float x);
| ong doubl e | 0gl0l (1 ong doubl e x);

The following functions compute the natural logarithm of (x+1):

float |oglpf(float x);
| ong doubl e | oglpl (1 ong double x);

The following functions compute the base-2 logarithm of x:

doubl e | og2(doubl e x);
float |og2f(float x);
| ong doubl e | 0g2l (I ong doubl e x);

The following functions extract the exponent of x:

float |ogbf(float x);
| ong doubl e | ogbl (I ong doubl e x);

The following functions break x into integral and fractional parts:

float nodff(float x, float *iptr);
| ong doubl e nodfl (I ong double x, |ong double *iptr);

284 A Source Book from The Open Group (2010)



ISO C Migration Other Mathematical Changes

The following functions compute x*FLT_RADIX**n efficiently:

doubl e scal bn(double x, int n);

float scalbnf(float x, int n);

| ong doubl e scal bnl (1 ong double x, int n);
doubl e scal bl n(double x, long int n);

float scalblnf(float x, long int n);

| ong doubl e scal bl nl (I ong double x, long int n);

The following functions compute the real cube root of x:

doubl e chbrt(double x);
float cbrtf(float x);
| ong doubl e cbrtl (I ong double x);

The following functions compute the absolute value of x:

float fabsf(float x);
| ong doubl e fabsl (I ong double x);

The following functions compute the square root of the sum of the squares of x and y:

float hypotf(float x, float y);
| ong doubl e hypotl (1 ong doubl e x, |ong double y);

The following functions compute x raised to the power of y:

float powf(float x, float y);
| ong doubl e pow (I ong double x, |ong double y);

The following functions compute the non-negative square root of x:

float sqrtf(float x);
| ong doubl e sqgrtl(long double x);

The following functions compute the error function of x:

float erff(float x);
| ong doubl e erfl (long double x);

The following functions compute the natural logarithm of the absolute value of the gamma
function of x:

float | ganmmaf(float x);
| ong doubl e | ganmal (|1 ong doubl e x);

The following functions compute the (true) gamma function of x:

doubl e t gamma(doubl e x);
float tgammaf(float x);
| ong doubl e tganmmal (|1 ong doubl e x);

The Authorized Guide to the Single UNIX Specification, Version 4 285



Other Mathematical Changes |SO C Migration

14.10.5 Nearest Integer Functions
The following functions compute the smallest integer value not less than x:

float ceilf(float x);
| ong double ceill(long double x);

The following functions compute the largest integer value not greater than x:

float floorf(float Xx);
| ong doubl e floorl (long double x);

The following functions round x to an integer value in floating-point format, using the current
rounding direction and without raising the inexact floating-point exception:

doubl e near byi nt (doubl e x);
float nearbyintf(float x);
| ong doubl e nearbyintl (1 ong doubl e x);

The following functions round x to an integer value in floating-point format, using the current
rounding direction and may raise the inexact floating-point exception if the result differs in
value from the argument:

float rintf(float x);
| ong double rintl(long double x);

The following functions round x to the nearest integer value, rounding according to the current
rounding direction:

long int Irint(double x);

long int Irintf(float x);

long int Irintl(long double x);

long long int Ilrint(double x);

long long int Ilrintf(float x);

long long int Ilrintl(long double x);

The following functions round x to the nearest integer value in floating-point format, rounding
halfway cases away from zero, regardless of the current rounding direction:

doubl e round(doubl e x);
float roundf(float x);
| ong doubl e roundl (1 ong doubl e x);

The following functions round x to the nearest integer value, rounding halfway cases away from
zero, regardless of the current rounding direction:

long int Iround(double x);

long int Iroundf(float Xx);

long int Iroundl (Il ong double x);

long long int |lround(double x);

long long int Ilroundf(float Xx);

long long int |lroundl (I ong double x);

The following functions round x to the integer value, in floating format, nearest to but no larger
in magnitude than x:

doubl e trunc(doubl e x);
float truncf(float x);
| ong doubl e truncl (1 ong double x);

286 A Source Book from The Open Group (2010)



ISO C Migration Other Mathematical Changes

14.10.6

14.10.7

Remainder Functions
The following functions compute the floating-point remainder of x/y:

float frodf(float x, float y);
| ong doubl e fnodl (I ong double x, |ong double y);

The following functions compute the IEC 60559: 1989 standard remainder x REM y:

float remainderf(float x, float y);
| ong doubl e remai nderl (I ong doubl e x, |ong double y);

The following functions shall compute the same remainder as the remainder family of functions,
but in a different manner:

doubl e renquo(doubl e x, double y, int *quo);
float renguof(float x, float y, int *quo);
| ong doubl e remguol (1 ong doubl e x, long double y, int *quo);

Manipulation Functions
The following functions produce a value with the magnitude of and the sign of y:

doubl e copysi gn(doubl e x, double y);
float copysignf(float x, float y);
| ong doubl e copysignl (1 ong double x, |ong double y);

The following functions return a quiet NaN, if available, with content indicated by tagp:

doubl e nan(const char *tagp);
float nanf(const char *tagp);
| ong doubl e nanl (const char *tagp);

The following functions determine the next representable value:

float nextafterf(float x, float y);
| ong doubl e nextafterl (Il ong double x, |ong double y);

The following functions are equivalent to the nextafter functions, except that the second
parameter has type long double and the functions return y converted to the type of the function
if x equals y:

doubl e nexttoward(double x, |ong double y);
float nexttowardf(float x, |ong double y);
| ong doubl e nexttowardl (I ong doubl e x, |ong double y);

The following functions determine the positive difference between their arguments:

doubl e fdi mdoubl e x, double y);
float fdinf(float x, float y);
| ong double fdim (I ong double x, |ong double y);

The following functions determine the maximum numeric value of their arguments:

doubl e frmax(doubl e x, double y);
float frmaxf(float x, float y)
| ong doubl e fmaxl (I ong double x, |ong double y);

If the optional macros FP_FAST_FMA, FP_FAST_FMAF, and FP_FAST_FMAL are defined, it
indicates that the corresponding fma() function executes at least as fast as a multiply and an add

The Authorized Guide to the Single UNIX Specification, Version 4 287



Other Mathematical Changes |SO C Migration

of double operands.
The following functions determine the minimum numeric value of their arguments:

doubl e fm n(double x, double y);
float fmnf(float x, float y);
| ong double fmnl(long double x, |ong double y);

The following functions compute (x*y)+z, rounded as one ternary operation:

doubl e frma(doubl e x, double y, double z);

float frmaf(float x, float y, float z);

| ong doubl e fmal (1 ong double x, |ong double vy,
| ong double z);

14.10.8 Comparison Macros
The isgreater () macro tests whether x is greater than y.
int isgreater(real-floating x, real-floating y);
The isgreaterequal () macro tests whether x is greater than or equal to y.
int isgreaterequal (real-floating x, real-floating y);
The isless () macro tests whether x is less than y.
int isless(real-floating x, real-floating y);
The islessequal () macro tests whether x is less than or equal to y.
int islessequal (real-floating x, real-floating y);
The islessgreater () macro tests whether x is less than or greater than y.
int islessgreater(real-floating x, real-floating y);
The isunordered () macro tests whether x and y are unordered.
int isunordered(real-floating x, real-floating y);

Note: Annex F (normative) was added to specify the IEC 60559:1989 standard floating-point
arithmetic. An implementation that defines __STDC_IEC_559__ must conform to the
specification detailed in this annex.

288 A Source Book from The Open Group (2010)



ISO C Migration Floating-Point Environment Support

14.11

14.11.1

Floating-Point Environment Support

The header <fenv.h> declares the types, and defines the macros and functions that support
access to an implementation’s floating-point environment.

Two types are declared:
fenv_t Represents the entire floating-point environment.
fexcept_t  Represents the collective floating-point status flags.

The pragma directive has three reserved forms, all starting with the preprocessor token STDC.
These are used to specify certain characteristics of the floating-point support to comply with the
IEC 60559: 1989 standard.

The pragma STDC FENV_ACCESS provides the means of informing an implementation when
a program might access the floating-point environment.

For example:

doubl e a;

#pragma STDC FENV_ACCESS ON
a=1.0+ 2.0;

#pragma STDC FENV_ACCESS OFF

Exceptions
The following function clears the supported floating-point exceptions:
voi d fecl earexcept (int excepts);

The following function stores an implementation-dependent representation of the states of the
floating-point status flags:

voi d fegetexceptflag(fexcept_t *flagp, int excepts);

The following function raises the supported floating-point exceptions represented by its
argument:

voi d feraiseexcept(int excepts);
The following function sets the floating-point status flags:
voi d fesetexceptflag(const fexcept_t *flagp, int excepts);

The following function tests which of a specified subset of the floating-point exception flags are
currently set:

int fetestexcept(int excepts);

Each of the following floating-point exception macros is defined if an implementation supports
these functions:

FE_DIVBYZERO

FE_INEXACT

FE_INVALID

FE_OVERFLOW

FE_UNDERFLOW

FE_ALL_EXCEPT (Bitwise OR of all the other macros.)

Additional implementation-defined floating-point exceptions, with macro definitions beginning

The Authorized Guide to the Single UNIX Specification, Version 4 289



Floating-Point Environment Support ISO C Migration

with FE_ and an uppercase letter, may also be defined by an implementation.

14.11.2 Rounding
The following functions respectively set and return the current rounding direction:

int fesetround(int round);
i nt fegetround(void);

Each of the following floating-point macros is defined if an implementation supports these
functions:

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

Additional implementation-defined rounding directions, with macro definitions beginning with
FE_ and an uppercase letter, may also be defined by an implementation.

14.11.3 Environment
The following functions respectively set and return the floating-point environment function:

voi d fesetenv(const fenv_t *envp);
void fegetenv(fenv_t *envp);

The following function saves the currently raised floating-point exception(s), installs the
floating-point environment represented by the object pointed to by envp, and then raises the
saved floating-point exception(s):

voi d feupdateenv(const fenv_t *envp);

The following function saves the current floating-point environment in the object pointed to by
envp, clears the floating-point status flags, and then installs a non-stop (continue on floating-
point exceptions) mode, if available, for all floating-point exceptions:

i nt fehol dexcept (fenv_t *envp);

The macro FE_DFL_ENV represents the default floating-point environment; that is, the one
installed at program startup. It can be used as an argument with the above functions and is of
type *const fenv_t.

290 A Source Book from The Open Group (2010)



ISO C Migration Type-Generic Math

14.12

14.12.1

14.12.2

Type-Generic Math

Type-generic macros may enable the writing of more portable code, and reduce need for casting
and suffixing when porting applications to new platforms.

The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines numerous
type-generic macros. Except for modf, there is a type-generic macro for each of the functions in
<math.h> and <complex.h> that do not have an ' f’ (float) or ' |’ (long double) suffix and
have one or more parameters whose corresponding real type is double.

Such parameters are called generic parameters.

Use of a type-generic macro invokes a function whose corresponding real type and type domain
are determined by the arguments for the generic parameters. The real type is determined as
follows:

1. First, if any argument for generic parameters is a long double, the real type is long
double.

2. Otherwise, if any argument for generic parameters is a double or an integer type, the real
type is double.

3. Otherwise, the real type is float.

Type-generic macros that accept complex arguments also accept imaginary arguments. If an
argument is imaginary, the macro expands to an expression whose type is real, imaginary, or
complex, as appropriate for the particular function.

Unsuffixed Functions With a C-Prefixed Counterpart

For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except for a’ ¢’ prefix, the corresponding type-generic macro for both functions has
the same name as the function in <math.h>.

For example, the type-generic macro for tan() and ctan() is tan.

If at least one argument for a generic parameter is complex, then use of the macro invokes a
complex function; otherwise, a real function is invoked.

Unsuffixed Functions Without a C-Prefixed Counterpart

For each unsuffixed function in <math.h> for which there is not a function in <complex.h> with
the same name but having a ' ¢’ prefix, the corresponding type-generic macro for both
functions has the same name as the function in <math.h>. If all arguments for generic
parameters are real, then use of the macro invokes a real function; otherwise, use of the macro
results in undefined behavior. Examples of such functions include fdim () and Iround ().

For each unsuffixed function in <complex.h> for which there is not a function in <math.h> with
the same name but without a * ¢’ prefix, the corresponding type-generic macro for both
functions has the same name as the function in <complex.h>. Use of the macro with any real or
complex argument invokes a complex function.

The Authorized Guide to the Single UNIX Specification, Version 4 291



Other Library Changes |SO C Migration

14.13 Other Library Changes

A number of new functions were added to the standard, prototypes for many functions now
contain the new keyword restrict as part of some parameter declarations, and a number of
functions had their definition clarified or extended.

atoll()
A numeric conversion function for the conversion of a string to a long long int representation.

long long int atoll (const char *nptr);

_Exit()

This function causes normal program termination to occur and control to be returned to the host
environment without triggering signals or atexit () registered functions.

This function name (rather than _exif()) was chosen to avoid potential conflict with existing
practice.
fpos_t

The description of fpos_t was changed to exclude array type objects.

isblank()
This function tests whether c is a character of class blank in a program’s current locale.

int isblank(int c);

iswblank()

This function tests whether wc is a wide-character which is a member of the class blank in the
program’s current locale.

int iswblank(wint t wc);

1labs()

In a similar manner to its counterparts abs() and lals(), this function computes the absolute
value of an integer.

long long int Ilabs(long long int j);

11div()

In a similar manner to its counterparts div() and [div(), this function retuns a structure of type
Ildiv_t which contains both the quotient and the remainder, each of which is of type long long
int.

I1div_t Ildiv(long long int nunmer, long long int denom

292 A Source Book from The Open Group (2010)



ISO C Migration Other Library Changes

localeconv()

The standard added the following members to the lconv structure (defined in <locale.h>) to
assign with long-standing POSIX practice and to permit additional flexibility with
internationally formatted monetary quantities:

char p_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or
succeeds the value for a non-negative locally formatted monetary
quantity.

char n_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or
succeeds the value for a negative locally formatted monetary
quantity.

char p_sep_by_space Set to a value indicating the separation of the currency_symbol, the
sign string, and the value for a non-negative locally formatted
monetary quantity.

char n_sep_by_space Set to a value indicating the separation of the currency_symbol, the
sign string, and the value for a negative locally formatted monetary
quantity.

char p_sign_posn Set to a value indicating the positioning of the positive_sign for a

non-negative locally formatted monetary quantity.

char n_sign_posn Set to a value indicating the positioning of the negative_sign for a
negative locally formatted monetary quantity.

printf(), fprintf(), sprintf()

New length modifiers were added to the standard:

hh Specifies that a following d, i , 0, u, X, or X conversion specifier applies to a signed char or
unsigned char argument; or that a following n conversion specifier applies to a pointer to a
signed char argument. This modifier enables character types to be treated the same as all
other integer types.

Il Added to support the new long long int type. Specifies that a following d, | , 0, u, X, or X
conversion specifier applies to a long long int or unsigned long long int argument; or that
a following n conversion specifier applies to a pointer to a long long int argument.

The maximum number of characters that can be produced by any single conversion was
increased from 509 characters (C89) to 4 095 characters.

realloc()

The description of this function was changed to make it clear that the pointed-to object is
deallocated, a new object is allocated, and the content of the new object is the same as that of the
old object up to the lesser of the two sizes.

scanf(), fscanf(), sscanf()

The hh and | | length modifiers (see printf() above) were added.

Also the conversion modifiers a and A were added with Abeing equivalent to a.

These conversion modifiers match an optionally signed floating-point number, infinity, or NaN,
whose format is the same as expected for the subject sequence of the strtod() function. The
corresponding argument shall be a pointer to floating.

The behavior of the sscanf() function on encountering the end of a string has been clarified.

The Authorized Guide to the Single UNIX Specification, Version 4 293



Other Library Changes |SO C Migration

setvbuf()
The function prototype was changed to include the restrict type qualifier:

int setvbuf (FILE *restrict stream char *restrict buf,
int type, size_ t size);

In previous revisions of the standard it was not clear about what, if anything, size means when
buf is a null pointer. The standard now warns that size might not be ignored, so portable
programs should supply a reasonable value.

snprintf()

This function was added to the standard to address the problem of sprintf() potentially
overrunning an output buffer. It is equivalent in functionality to sprintf() except that it performs
bounds checking on the output array. Extra characters are discarded and a null character is
written at the end of the characters actually written to the array.

strftime()

The definition of this function was changed to incorporate additional conversion specifiers
defined in the IEEE Std 1003.1¢c-1995, including %C, %0, %, %, %9, %G, %, %, % , OR, %, o4,
%, and %/, as well as the E and Omodifiers.

strtod(), strtof(), strtold ()
The following two functions were added to the standard:

float strtof(const char *restrict nptr,
char **restrict endptr);

| ong double strtold (const char *restrict nptr,
char **restrict endptr);

In a similar manner to their counterpart, the strtod () function, these functions convert the initial
portion of the string pointed to by nptr to float and long double representation, respectively.
Support for subject sequences relating to floating-point (NaN, INF, and so on) was also added.

strtoll(), strtoull()

The following two functions were added to the standard:

long long int strtoll (const char *restrict nptr,
char **restrict endptr, int base);

unsigned long int strtoull (const char *restrict nptr,
char **restrict endptr, int basefb);

In a similar manner to their counterparts, the strtol() and strtoul() functions, these functions
convert the initial portion of the string pointed to by nptr to long long int and unsigned long int
representation, respectively.

294 A Source Book from The Open Group (2010)



ISO C Migration Other Library Changes

tmpnam()

The previous standard had a serious flaw regarding this function. If the function were called
fewer than {TMP_MAX] times but was unable to generate a suitable string because every
potential string named an existing file, there was no way to report failure and no undefined
behavior; hence there was no option other than to never return.

This standard resolved this issue by allowing the function to return a null pointer when it cannot
generate a suitable string and by specifying that {TMP_MAX] is the number of potential strings,
any or all of which may name existing files and thus not be suitable return values.

Note: This is a quiet change in the standard. Programs that call this function without checking for a
null return value may produce undefined behavior.

ungetc()

The standard deprecated the use of this function on a binary stream at the beginning of the file.

viscanf()

The following functions are functionally the same as scanf(), fscanf(), and sscanf() respectively,
except that instead of being called with a variable number of arguments, they are called with an
argument list:

int vscanf(const char *restrict format, va_list arg);
int vfscanf(FILE *restrict stream

const char *restrict format, va_list arg);
i nt vsscanf(const char *restrict s,

const char *restrict format, va_list arg);

viwscanf()

The following functions are functionally the same as fwscanf(), swscanf(), and wscanf()
respectively, except that instead of being called with a variable number of arguments, they are
called with an argument list:

int viwscanf (FILE *restrict stream
const wchar_t *restrict format, va list arg);
i nt vswscanf(const wchar t *restrict s,
const wchar_t *restrict format, va list arg);
i nt vwscanf (const wchar _t *restrict format, va list arg);

14.13.1 Wide-String Numeric Conversion Functions
The following functions were added to the existing wide-string numeric conversion functions:

float westof (const wchar_t *restrict nptr,
wchar _t **restrict endptr);

| ong doubl e westol d(const wchar _t *restrict nptr,
wchar _t **restrict endptr);

long long int westoll (const wchar_t *restrict nptr,
wchar _t **restrict endptr, int base);

long long int westoull (const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

The Authorized Guide to the Single UNIX Specification, Version 4 295



Annexes |SO C Migration

14.14 Annexes

A number of new normative and informative annexes were added to the standard and some
exiting annexes were modified.

Annexes A, B, and E were modified to include the new keywords, universal character names,
types, implementation limits, macros and functions, and other changes to the C language.

Annex F (normative) was added to specify the IEC 60559:1989 standard floating-point
arithmetic. An implementation that defines __STDC_IEC_559__ must conform to the
specification detailed in this annex.

Annex G (informative) was added to specify recommended IEC 60559:1989 standard-
compatible complex arithmetic. An implementation that defines
__STDC_IEC_559_COMPLEX__ should conform to the specification detailed in this annex. It is
non-normative because there were few existing implementations at the time this standard was
approved.

Annex H (informative) describes the extent of support in this standard for language-
independent arithmetic as specified in the ISO/IEC 10967-1:1994 standard. This annex was
added, however, because all programming languages covered by ISO/IEC JTC1 SC22 standards
are expected to review the ISO/IEC 10967-1:1994 standard and incorporate and further define
the binding between that standard and each programming language.

296 A Source Book from The Open Group (2010)



3 T TSRO 272
OXAE ettt ettt e e e e bee e e e e e ta—eeeeeeaa—aaeeeeaaba—aaeeaattataeeeaaaraaaeeeaaaraaeeeeaararaeeeeanrrreaeeeannrres 1
e N OO 292

=<1 532 01 o OO OO OSSOSO 1

ADSOIULE-VAIUE FUNCHON .....ceviieeiiciieceeececeeeete ettt ettt e e e e e eete e eaeeeteeeneeeeaeeeneseseeeneeennes 280

= Tal0 1<) ST ROt 4

P2 Tal0 1] 4§ SRRt 4

= Tale 1] o1 ATt 4

=Tl e 1<) F TRt 4

FoTe Lo B icIIR Vg N (0) 8 A T=1 5 o) o WEURR RSO RRRRROTS 46

ADVANCED REALTIME ...ttt ettt eae e enee e 17,104-109, 115, 254

ADVANCED REALTIME THREADS.......oooieoeeeeee ettt eetee et eene e eeaeeenesenaseenee e 126

ANONYIMOUS AZZTEZATE «...ooveviiitiitieticteteet ettt s et be bt nes 268

ATZUINENT INACTOS .. .cuveuteiietietiete ettt ettt et b et et e b be et b et et et eeseeaeeaeeseeaeereebeeseeteses 273

L= N 11 4 0 1 1<y T« TTUSRPOSR 272

array declaration ... 270

array type compatibility ... 270

F= T4 A LT S UUT TN 7

ASIIU et ettt e et et e e e e te e e aeeetee e ateateeeteenaeeeateeateeeraeeteeeraeeaaeeeareentreerreents 7

2 1C 81 o} TRt 7

P2 1C 8 1 o1 TRt 7

P2 1CY o1 ROt 7

P21 7= V22 ROt 8

P2 7= 4 122 TRt 8

P21 721 | SRRSOt 8

P21 7= 1 0§ SRRt 8

=172 01 o1 ARSIt 8

P21 721 | SRRt 8

AEOLL. ettt ettt te et ehe e ae e e beetb e beeab e be e beete e beeaeebeeatebeeraeebeerbenreentereentans 9,292

3 (o Tel SRR 271

370 T0) (<T=1 o KOTSRS 266

L= o33 ST 10

121 o1 DT ORRRROT 10

L= Tale 1<) TP 10

Tz Tale 1] o ¥ ST 10

Tz Tale 1] o1 E TSRO 10

[Tz Vel e 1<) PO 10

CATEE o 11

CATEL oo 11

CASE-SENSIEIVE TAENEITIOTS ....eveeviieiceeee ettt ettt e e e et eeete e eraeeeteeeneeeeaeeeneeeseeeneeenees 272

CASIIU ..ttt ettt e et et e et e e eaeeeteeeeteeeraeeete e e et eeaeeeateeeteeaaaeeateeerae e bt e e reeareeerteeeteeereeenteeereeenreeans 11

CASIIINS ..ottt ettt e et e te e et e eete e et e eeteeeateeeaeeereeeebeeerae e te e e reeeteeerteeeteeerteeateeerneenreeans 11

T2 1) o1 41 AR ORURRRR 11

T2 1) o1 TR ORURPRRR 11

L2172 o | TR 12

L2121 1 4} SRS 12

Fa=1 721 1 o1 E RSP RRROT 12

The Authorized Guide to the Single UNIX Specification, Version 4 297



CALANL ..ottt et et e e ete e e b e e be e tee e beeeabe e beeetae e beeetbeebaeeteeebaeetaeeabeeetaeerbeetaeesaereean 12
CDIEE ettt ettt ettt ettt et e bt et e eat et ettt e ett et e ettebeeaeeteerbeeteenteereenbeereenreearen 13
CDI Lottt ettt e et e et e e ebe e e tb e ebe e tee e beeeaae e beeetaeebaeetaeebaetaeebaeeraeerbeeeraeerbeentaeeraereean 13
CCOSE vttt ettt ettt et e ettt et e et e et e et e b e ettt e eat e ae et e bt et e eat et e ett et e bt e b e ete e be et e eteenbeeteenteereenbeersenreeaeen 13
CCOSIE ettt ettt ettt ettt et e teebeete et e e te et e etb et e et b et e etsebeeaeeeteerbeeteenteereenbeereenreeaeen 13
CLOSIL. .ottt et e e e te e e te e e ebe e tte e beeeaaeeabeeetaeebaeetbe e ba e teeebaeeaaeeabeeeabeenbeetaeeraeaeean 13
CCOSL ettt ettt ettt et e et e et e et et e ettt e ettt e eabeete et e bt e b e at et e ett e b e ett et e eae e beeat e teerbeeaeenteereenreereenreeaeen 13
COIIE ettt ettt ettt ettt b ettt ettt et e bt et e at et e ett e b e ett et e eaeebeeaeeteenbeeaeenteereenbeereenreeaeen 14
CIIL 1ottt et e et e et e e be e e te e eebaeetee e beeeabe e beeetaeebaeetbeebaeteeebaeeaaeeabeeerbeerbeetaeeraereean 14
COXPL it 14
COXPL oottt 14
CIMAGE .o 16
CIMNAGL ..ottt 16
ClaSSIfICAION IMLACTO ....viveeerectierecteete ettt ettt et eteeete et eeaeeteesteeteeeteeaseeseeseeteenseeseesseessenseessestsensesseensenseens 282
CLOCK _GOTHIIMIE ...t e e e 17
CLOCK SEEHIITIO ..ttt ettt e e et e et e eaaeeteesab e eaaeasaeesraeesasesateesaseenseesssesnseesneean 17
CLOGE o 18
CLOGL s 18
L0501 111 4 | SO U U USURPPRRRRNE 271
COMPATISON INACTO . v.veeivtereseiete sttt ettt ettt ettt s bt b bt b b s b ae st e st b s ae s e sens 288
COMPLEX NUIMNDET ...coviiiiiit ettt s st tene 278
COMPOUN LEETAL.....cuoviiiiiiiiiii e 268
COTUE 1ottt 19
a0 1 OO OO 19
COPYSIGIU ot 20
COPYSIGNL coeirrittititt ettt bttt b bttt a bttt e 20
COSEteeteeteeeeeeeeeeeeeeeeeeeteeeeeeeeeeteetteeteetet e ettt et e eae et e bt e teeat et e ett et et e et e eae e beeteete et eeteenseereenbeereenreeaeen 20
COSIL ettt ettt ettt ettt ettt et ae et e at et ettt e et e et e eateabeeabeeteerbeeteenteereenbeereenreeaeen 20
COSRL ettt e e be e et e e ebe e e te e e beeeaa e e beeetaeebaeetbe e baeeteeebaeeaaeeateeeabeenbeetaeebaereean 20
OS]ttt ettt ettt ettt e e et e e et e e te e beebeeetbeebaeetteebeeaabeebeearaeebaeataeeabaeatteebaeeaaeeateeesbeebeetaeeraenreean 20
CPOWL e 21
CPOW Lottt a ettt 21
CPTOJE oo 21
o] o3 4o FO OO OO 21
CLEALL ...ttt ettt ettt et e et ettt ettt ettt et e bt et e at et e ett et e et b et e eat e beeteete et eeteenteereenbeereenreearen 21
CITEALL ...ttt et e e e ete e e ta e e ebe e tt e e beeeta e e beeetae e baeetaeeba e teeebaeeaaeeateeerbeerbeetaeeraeaeean 21
CRY PT ...ttt ettt ettt ettt e et e et ete e b e eseebeeteenveeasebeessenseess e beeaseteenseeteenseeseenseeasenseensen 22,28, 155
CSIIU 1ttt ettt ettt e ettt et e e a ettt e ettt et bt et e bt et e ae et e ets e beett et e ete e beeaeeteenbeeaeenteereenreereenreeaeen 22
CSIIINE .ottt ettt ettt et ettt e ettt b e bt et e ae et e ete e b e ett et e ett e teeaeebeerbeereenteereenbeereenreeaeen 22
CSINNL ..ottt e e e rte e s ta e ebeeete e e beeeaa e e beeetaeeba e tbeeba e teeebaeeraeeabeeeabeerbeetaeeraereean 22
CSIML 1ttt ettt e et e et e e s b e e be e e taeebeeette e beeetbe e beeetaeebaeatbe e baeateeebeeeabeeateeerbeerbeetaeeraereean 22
a7 5 OO OO 22
oY | o 4 OO OO 22
AN <ottt ettt ettt et ettt e et e et et ettt eb e bt e b e eae et e ers et et b et e eae e beear e beerbeeteenteereenbeereenreeaeen 23
CEANINT ..ottt ettt ettt et ettt e et e te et e te et e e ae et e e te et e ett et e ete e beeae e teenbeeteenteereenbeereenreeaeen 23
CEANINL. ...ttt ettt ettt ettt e et e te e e e te et e e tt et e e bt enbeett et e eaeebeearebeerbeeaeenteereenbeereenreeaeen 23
CRANL L.ttt ettt e et e et e e be e s tb e ebeeette e beeeae e e beeetbeebeeatae e baeteeebaeetaeeateeerbeerbeenteeeraereean 23
CHIITIE T oiieieeeeee ettt ettt e eeet e e e eeeabar e e e eeetas e e e e eesassaeeeeeeesasaeeeeeeataseeeeeesssaseeeennstaseeeesatssseeesenssrseeeeeansnres 23
AAYIGIE ..o e 183
DBM ..ottt ettt ettt ettt et ettt ettt ettt et ettt e bt e beeat et e ettebeett et e eae e beeteeteenbeeteenteereenreersenreearen 24
T o) o o T e] (o 1-T< TSRS 24
T 10} o 0 TKe =) =1 ¢ <R URRORRY 24

298 A Source Book from The Open Group (2010)



Index

T 103 o T =) 'y o) RS RRROSR 24
16 13’0 B (<3 ) 4 WUURURR ST 24
ADIN_FITSEKEY ..ottt 24
ADIN_TIEXEKEY ..t 24
ADIN_OPEIN....ocviiiiiii s 24
16 10} o TR {0 ) 4 <P 24
decimal integer CONSTANt ...........c.oiiiiii s 268
designated INTHAlIZET ........c.coeviiiii s 268
DIR oottt bRt a e h et b bRttt h ettt et ettt t et 18
APTINE oo 45
AUP2 ottt a ettt ettt ettt 26
eMPLy argumENt IMACTOS .....o.iviiiiietiietiietet ettt ettt bbb bbbttt b b b aes 273
ENUMETAtION SPECILIET ....v.vivviviiiiiiiii s 269
EIVITONIMIONE ..ottt bbb s a e a e n e ens 290
ETANIAAS ... bbb et nenen 26
EIFCE .. bbbt nenen 30
EIFCL bbbt nenen 30
ETEE ettt nenenen 30
BTl bbb ettt nen 30
LS5 0 0 OO 271
€ITOL AESCIIPLIONS ..evvivittitiictctctct ettt b ettt teaa 54
exact-width INteger tYPe ... 275
EXCEPHIONL. oottt 289
EXECL.iiii s 31
EXECLE .. 31
EXECIP 1ottt ettt 31
LS o OO 31
LS o< OO 31
EXECVP trttiuietiietitett ettt ettt e b bbbt bbbk b s bbb a bbbt bR bR e R bbb bbbt 31
EXP2f 1ot 32
EXP2L e 32
EXPL et 32
g ) OO OO 32
EXPINLE oot 32
EXPINLL oottt 32
exponential fUNCHON .........cciiiiiiii e 280, 284
BADST ... ettt 33
FADSL ... bbbt nen 33
FACCESSAL ..ottt 3
fastest minimum-width Integer type ... 275
FCIIMOAAL . ... e 15
FCROWIIAL - e bbbt 16
EAIMUE e 35
EAIML o 35
ESEEEIIV ... ettt 37
£SeteXCOPELAG .....vvviiviiiii e 37
FESEETOUIN. ... et 37
FEXEOVE ..ottt 31
FE_ALL_EXCEPT ..ottt ss s ss st s sttt sasas st n st ssaenene 289
FE_DIVBYZERO......coiiiiiccsstscs sttt ss st ss st s s s st st b s sas st s st ssae st 289
FE_DOWNWARD ..ottt sss st s s sttt st b s st sene 290
FE_INEXACT ...ttt sttt b s sa st b s s s st s sttt et st nsae st 289

The Authorized Guide to the Single UNIX Specification, Version 4 299



FE_INVALID .....oiiiiiiiiiii s st 289
FE_OVERFLOW ..ot s 289
FE_TONEAREST ...ttt s 290
FE_TOWARDZERO ........ccoovtiiiiniiiniiiiii s s 290
FE_UNDERFLOW ....oiiiiiiiiiiiiiii s 289
FE_UPWARD ...ttt 290
FIFO .ottt 92
FILE oottt s 17,34
flexible array MEMDET ..........cooiiiimiiiiiiiii s 270
floating-POint CONSLANL ........cviviiiiriiiiiii e 272
floating-point NVITONIMENT .......ccociviiiiiiiiiii s 289
FLOOTE ..o 41
FLOOTL ..o 41
EINAT (o 41
FINAL oo 41
FIMAXE oo 42
FIMAXL o 42
EINNE e 42
EININL o 42
EMOAS ..o 42
FMOAL..oiiiii e 42
£OT SEALEIMENL ...t 271
EPCLASSIEY vt 282
P08t e 292
EPTINEL v 293
FP_INFINITE ...ttt 282
FP_INAN oo 282
FP_INORMAL ..ottt s 282
FP_SUBNORMAL......oiiiiiiiiiiiinn s s 282
FP_ZERO ...ttt 282
ETEXPE oo 48
ETEXPL oo 48
ESCANL ..o 293
SEEKO ..t 48
FEELLO v 51
FIEYIOCKEILE oo 41
FTW oo 100
function
ADSOIULE-VALUE ...ttt 280
EXPONENIAL ....oviviiiiitiitittcccc e 280, 284
RYPEIDOLIC. ... 279, 283
LOGATTHNIMIC ..o 280, 284
MANIPUIALION.....iiiiiiiiii 281, 287
NEATEST INEEZET ...vveeieiiice s 286
POWET ittt ettt etk ek bbbt b et b et b s b e s bbb e bbb bbbt b te bt b st ae e 280
TEMAINAET ... s 287
HTIZONOMELTIC ottt 279, 283
UNSUIEIXE ..o s 291
wide-string NUMETIC CONVETSION .......civiiiiiiiiiiiii s 295
FUNLOCKEILE. ... 41
GENETIC PATAINETET ...cvivitititiiiiiiit ittt sttt sttt bbbttt bbbttt 291
GetaddIINO. ..o s 46

300 A Source Book from The Open Group (2010)



Index

getchar_Unlocked ... 55
GEEGTONE .ot 28
GOEGIZIA T ettt 57
o= =0 0 D OO 58
GEHNOSTENL ..o 28
GOLIN@. ... 56
GEHLOZIN_T oo 59
getNetDYAddr ..o 28
GENEtDYNAME ..ot 28
GEINETENT ..ot 28
GEEPITISE ettt 59
GetPTOtODYINAME ..o 29
GEtPTOLODYIIUIMIDET ..ot 29
GEEPIOTOCNE ... 29
GEEPWEINE ..ot 29
GOEPWIAINI T oottt ettt et bbbt bbb 61
GEIPWUIA_Tweiviiiiiii bbbttt 62
GESEIVDYNAIME ..o 29
GEESEIVDYPOI . ..eiviieiiiiittt ettt 29
GEESEIVEINT ...ttt 29
GEEUIXENE oot 30
GEEUEXAA oo 30
GEEUEXIIN@ .o 30
GLODETEE ..o s 65
GINEINIC T 1ottt 65
greatest-width integer type ... 276
RAESEIOY .. s 65
REAET ..o 274
REAETS ... s 243
hexadecimal CONSLANL ........cccovviiiiiiiiiiiii s 272
RSEATCHL ... s 65
REOTIS ..o 66
hyperbolic fUNCHOTN ......cciiiiiii s 279, 283
RYPOLE oo s 66
RYPOLLa.ciiii s 66
IAENEFIET «.oviiiei s 272
TLOZDI .o s 68
TLOGDL ot 68
IMPlicit deClaration .........coociiiiiiii e 269
INCOMPLETE AITAY.....cviviiiiiiiiiicic s 270
FE T A 1 ¢ o Y- IS USRS SR PURRRRRROt 68
INEE_PLOML. it 69
INIINE. ot 267
INEEZET EYPE vttt 275

eXACE-WIAN. ..o 275

fastest mINIMUM-WIAth......coooiiiiiiiii s 275

greatest-width...........oo s 276

holding object POINLET ... s 276

MINIMUM-WIAR 275

specified-Width HMit. ... 277
FTST=1 1o 10 1o o N SRR 70
ISAIPRA_ L. s 70

The Authorized Guide to the Single UNIX Specification, Version 4 301



ISDIANIK ...t ettt ettt et et et e e ta e e b e e baeeaae e baeebe e beeeabeebaeeabeetaeeareebaenareentes 292
1<) o] = 1 S USROS 71
1= 4 ¢ o 1 USROS 71
ISAIGIE L oveieieeeee ettt 72
ISEIIUIEC oottt ettt ettt ettt ettt te et e ete et e eae e beeab et e erb e be et e ebe et e eteenbeeaeenteenteere et eeteerenteenrenreens 282
ISGTAPI_ L. 72
ISETRALET ..ttt 288
ISgreater@quAl. ... ... 288
ISIINUE 1ottt ettt ettt et ettt et e eae e b e et eabeetbeate et e te et e etaeteeatenteeateereerbeeteereeteenrenteens 282
1<) (0} T4 <) ol R RRN 74
§1S] 4 F=1 0 0 U USURPPPRRNE 282
ISTIOTINIAL ...ttt ettt et e et e et e e teeebe e teeeabeeetaeeabeebsesass e baeesseensaesaseesaesasseseeetssenbeennreenres 282
ISO C StANAAId ....ooevieeieeie ettt ettt ettt e e b e et e e tbe e baeebeebeesabeebeesabeeseenaseebaennneenres 265
ISPIINE L.t 74
ISPUNCE_L ..t 75
ISSPACE L. s 75
ISUPPOI_ Lottt bbbttt 75
ISWAIIIUITI L.ttt ettt e et e et saa e et e e sas e eaaeesaeesaaeesasesateessseenseesssesnseesneean 76
ISWAIPRA_L .. 76
ISWDLATIK .ttt ettt ettt e et e e te e et e e baeeabe e baeeaae e baeeabeebeeeabeetaeeabeebaeeareebaenareenres 292
F1c3 74 o) F=1 a1 G AR 76
1S3 704 015 o K TR RRTROR 77
ISWCEY PO Lottt 77
ISWAIGIE_ Leuviiiiiiicii e 77
ISWETAPN Li..oiiiiiiiii 78
ISWIOWET L.ttt ettt et et e et e e sat e et e e sab e et e e sabeeaaeesatesaaeesasesateessseenseessseenseesneean 78
ISWPTINE_L .o 78
ISWPUNCE L.t 79
EISWSPACE_L ...t 79
ISWUPPET L.ttt 79
ISWXAIGIE L 80
ISXAIGIE L. e 80
LRt R ket n et e b s n et nenene 80
LT OO OO OO OO OO OO OO OO O OO PO OO OO OIOTERO 80
JEANAAS ...ttt 26
KEYWOTd ..ot 265
IO .ottt ettt ettt ettt ettt ettt e erteaeeateebe et eate et e bt et e taeareeteenbeeteenreeteeneeeaeeneeens 2
ICOMGA ..ot 26
LAEXDLE .o 82
LA@XPL oottt 82
TEINUA ettt ettt ettt ettt et et et ae et e e at et e e tt et e ett et e ete e beeae e teerbeeaeenteereenbeereenreeaeen 87
LIAMIMAL ... s 82
1GAMIMNAL....oii s 82
HDTATY oo 292
HNE IONGHN ... e 272
LINKAE 1vvieveeteete ettt ettt ettt ettt ettt e v et et e eteeteeateeseeaseebeenseeaeenbeetsenbeete et e eas e beeateteerbeteenteereenbeereenreeaeen 82
JIADIS vttt ettt ettt ettt et be ettt et e bt et e bt e b e ete e b e ett e beeteereerteere et e eaeenteeais 81,292
TEAIV vttt ettt ettt ettt ettt et et et et et e bt et e bt e b e ete e beett e b e eteereerteere et e eaeenreeais 82,292
IIEIIUE .ttt ettt ettt e et et e beeab e ae e b e be e b e ae et e ete et et e et e eae e beeareteerteeaeenteereenbeersenreeaeen 84
TIEINEL ot ettt e e e ete e e te e ebe e ta e e beeeaa e e be e tae e baeetbe e ba e teeebeeeaaeerbeeeraeerbeetaeeraeaeean 84
IIFOUIAL .ottt ettt ettt et ettt et e te et e beeneeeae e seetsenbeessenseeaseseesseteenseeseenseeaeenseersenreeaeen 84
LIEOUNAL ..ottt ettt e et e et e ebe e tte e beesaaeeabeessaeerbaeesseebaesseeeebaesseesseessseensseseeensaeseean 84

302 A Source Book from The Open Group (2010)



Index

LOCALECOMNY ...ttt ettt ettt e b et e e be e tee et e e aaeeabe e baeeass e baeeassenseesaseensaesessensaensssensaensseenses 293
| FoYel=1 L i o LT oS RRRR 84
LOGLOE ..o 85
oY= [0 OO 85
OGP i 85
LOZLPL ettt ettt ae 85
LOG2E ..o 86
LOG2L oottt b ettt 86
logarithmic fUNCHON .....ccvvviiiii e 280, 284
LOGDAL o 86
LOGDL.ooiiii e 86
LOGE o 85
LOGL ottt 85
IFANIALS ...ttt ettt e e et e e ete e e ta e eebe e te e e beeeab e e beeetaeebeeatae e ba e taeebaeetaeeabeeerbeeabeetaeebaeaeean 26
LEIIUE ettt ettt ettt ettt ettt et ettt et e bt e b e at et e ete et e et b et e ett e beeteeteerbeeteenteereenbeersenreeaeen 86
IEEIUEL .ottt et e et e e be e e te e ebe e tt e e beeeabe e beeetaeebaeatae e baeeteeebaeeaaeetbeeetbeeabeetaeeraeteean 86
LEOUNAL .ottt ettt ettt et te et e ete et e e te et e etsenbeeteebeeasenbeeaeebeenbeeaeenseeasenteereenteeaeen 87
IEOUIUAL .ttt ettt ettt et et te et e ebeeaeeas e s e etsenseessenseesseseessenseesseeseenseessensesrsensesaeen 87
ISEAL ettt ettt ettt ettt et e et e et e e b e e be e eta e e be e tte e beeeabe e beeetaeebaeatbeebaeateeebaeeabeeateeeraeerbeebaeeraeaeean 49
TXEACTO v eeeeeeueurreeeeesenrreeeeeassssseeseassssseessasssesaseesasasssseessssssssseessassssseessssssssesessssssssssesssssssseeessssssseessesssssasessssnnses 277

1a/0) 001 o T 4 OO OO 288
manipulation fUNCHON ... 281, 287
INIDSIIITOWCS 1.ttt ettt et et e vt e et e e teestbeebeeeteeebeeesseebeesaseeaseessaeensaessssensaeseeeesaesseesseessseessseseeensaeseean 88
min/max lne length..........cccoooviiiiiii 272
minimum-width INteGeT tYPe......ooiiiiiii e 275
INKAITAT c.tteetiece ettt et e et e e et e ebe e tee e beesaaeeabeeetaeesbaessseesaeaseeeebaeesseesseessseesseeseeensaenseean 91
INKEIFOAE v ettt ettt ettt ettt et ettt e eae e te et eebeereeeae e b eeteenbeete e b e eas e beeaeebeenbeeaeenseereenbeersenreeaeen 92
INKINIOAAL ..ttt ettt et e st eeeteeeteeebeeette e beesaseeabeeesaeesseessseesaesseeebaessseesseessseesseeseeensaeseean 92
INKSTEINIP ¢ ettt ettt h et b bttt h ettt bttt et e 91
IO .ottt ettt ettt ettt et ettt ettt et e bt e b e at et e ete et e ett et e eatebeeateteerbeeteenteereenbeereenreeaeen 94
INLOAL ..ottt ettt ettt ettt et ete et et te et e be e b e ae et e te et e ett et e ete e teeatebeeabeeteenteereenbeereenreeaeen 94
MJ_tMEATECEIVE ... s 96
M_tMEASENd ... s 96
INTANALS......oeieeeeeee ettt e et e et e e et e ettt e eteeebaeette e beesaseeabeeesaeessaessssensaesseeebeesseesseessseesseeseeensaeseean 26
MUItIPLICAtIVE OPETALOT.....oviviiitieiiiiictct ettt 269
INUNLOCK ..ottt ettt e et e et e e tee e beesaaeeabeeetaeesbeessseebaeseeeebaessseeaseessseessseseeensaenseean 93
INUNLOCKALL ...ttt ettt e bt e st e ebe e e taeebeestaeebaeeseeeabaessseesseessseesseeseeensaenseean 93
NAME INOTINATION . ...veevvevieteeete ettt ettt ettt et ettt eeteeeaeeae e seesbesteensesteensesteenseeseenseeseenseesseseenes 60
TMANE <ottt ettt ettt ettt et e ettt e ettt e et et e et e bt e b e eaeebeehteteeat e aeert e te et eateerbeateenbeatsenreeteenreeneereenes 98
TMANL ..ttt ettt ettt ettt e et e b e et e be et e bt et b e eae b e ebtebeeat e aeerbeteeabeateenbeteenreeteenreeteenreeatereeaes 98
NEATDYINL ..ot s 99
NEATDYINEL ..ovviiiii s 99
nearest integer fUNCHON...........ocoiiiii e 286
NEXEATEEIT ...ttt ettt ettt et e et et e bt et e ete b e e te et e eaeeebeeat e te et e ete et e eteebeettereeteenreereens 100
NEXEATEETL ..ottt et ettt ettt et e et e v e e bt et e ete e b e ete et e ereeeteeateeteerteete et e eteenbe bt ereeteenrenreens 100
NEXEEOWATA .eeieiiiiiecie ettt et e e e bt e et e e beestbe e baeease e beesaseenbeesaseeseessseenssensssenssessseenseessseenseenns 100
NEXHEOWATAL ..ottt ettt ettt et e et et e e bt et e ete e b e eteeseeseeeseeasessersesssenseersensestsenseeteenrenreens 100
NEXHEOWATAL ..ottt ettt ettt et ete et e eteebeeteeseeseeeseersesseaseessenseessensestseseereensenseens 100
NLIANGINEO L. s 101
NFANIALS ...ttt ettt e ettt e et e e be e teeeabeeebaeeebe e sseease e seeenbeenbeeeabeesaeeebeeebseetbeebeeeabeenteeeaseeneeenrs 26
TUEORL oottt te et e e e e te e e b e e ta e et e e baeebe e bee et e eaaeebeeeaaeeabe e beeeabeeteeeabeeteeears 66
TUEORIS ottt ettt e et e et b e e tae e be e tb e e be e baeebaebae e beeeaaeebeeetaeeabeebeeeabeeteeeabeeteeears 66

The Authorized Guide to the Single UNIX Specification, Version 4 303



(63 0 <3 - X OO 101
OPEIAIT ...ttt 35
0] £S5 41 o= OO 19
() 0S5 AT 3 0 0T<3 4 1] w 7= 4 OO 102
OPEATE ettt 60
O OIT ottt et bbb 60
OPHII ottt 60
OPEOP et 60
PANCONT ..o s 44
POSIX_SPAWNAT NI ..eovieiiiiceiic s 107
POSiX_spawnattr_Setflags........ccoviuiiiuiiiiiiiii e 107
POSIX_SPAWNAT_SEtPETOUP vvevevtitiniitetcec ettt 108
posix_spawnattr_setschedparamy...........cccccouiiiiiiiiiiiii s 108
posix_spawnattr_setschedpOoliCy ........cccviiiiiiiiiiiiiii s 108
posix_spawnattr_setsigdefault............ccovviiiiiiiiiiiii 109
Pposix_spawnattr_setsigmMAasK...........cccoviiiiiiiiiiiiiiiiii s 109
POSIX _SPAWTIP ..ttt ettt ettt a bbbt b s et b b s et s b a et ans 106
posix_spawn_file_actions_addOpPen.........cccocouvuiiiiriririiiiiiriireeree s 106
posix_spawn_file_actions_INit ... 107
posix_trace_attr_getcreatetime...........cceveveiiiiiiiiii 110
posix_trace_attr_getgenverSion ... 110
posix_trace_attr_getlogfullPolicy ..o 110
posix_trace_attr_getmaxdatasize ..ot 111
posix_trace_attr_getmaxsystemeventsize ... 111
posix_trace_attr_getmaxXusereVentsizZe. ... 111
posix_trace_attr_getname ............ccooiiiiiiiiiiiiii 110
posix_trace_attr_getstreamfullpoliCy .......cccocovviviiiiiiiiiiiiiiiiic e 110
posix_trace_attr_getstreamsSiZe. ... 111
POSIX_trace_attr Nt ... 109
posix_trace_attr_setinherited ... 110
posix_trace_attr_setlogfullPOLiCy .......ccccoviiiiiiiiiiiiiiii e 110
posix_trace_attr_Setlogsize ..ot 111
posix_trace_attr_setmaxdatasize...........ccocoiiiiiiiiiiiiiniiis 111
PpOsix_trace_attr_Setname..........ccooviiiiiiiiiiiii e 110
posix_trace_attr_setstreamfullPOliCy ........cccoviiiiiiiiiiiiiiiiii e 110
posix_trace_attr_setStreamsize ... 111
posix_trace_create_Withlog........ccooiiiiiiii e 112
posix_trace_eventid_get_Name .........cocvviiiiiiiiiiiii e 113
POSIX_trace_eVentid_OPeI........ccocviiiimiiiiiiiiiiiiiiii e 112
posix_trace_eventset_del...........coiiiiiiiiii 113
POSIX_trace_eventset_emMPty ... 113
POsiX_trace_eventset_fill ..........ccccooiiiiiiiierreee e 113
Pposix_trace_eventset_iSMEMDET ... 113
posix_trace_eventtypelist_reWind ..o 113
POSIX_TACE_FIUSI ...t 112
POsiX_trace_get_Status.........ccooieiiiiiiciii 114
POSIX _TACE_OPEIL .ttt ettt 112
POSIX_trACE_TEWINA ..ot s 112
POSIX_ETACE_SEE_fILET ...t 114
POSIX_trace_ShUtdOWT.......c.cciiiiiiiiii s 112
POSIX_ETACE_SEOP w.vviitetciii ettt 115
posix_trace_timedgetnexXt_eVent............cccooceiiiiiiiiii s 114

304 A Source Book from The Open Group (2010)



Index

posix_trace_trid_eventid_OPen ... 113
PpOosix_trace_trygetnexXt_e@Vent.........cccoooiiiiiii s 114
POWET fUNCHON ..ttt 280
POW e 115
POWLaoiiii e 115
0 == .4 OO 273
PIEAM 1ot 141
predefined IdeNtfier ... 267
predefined MACTO ... s 272
PIINEL oo 45,293
process

setting real and effective USer IDS........cccooiviiiiiiiiiiiii s 156
PSIGNAL....oiiiiii e 116
pthread_attr_init.........ccooiiiiii 117
pthread_attr_setdetachstate.............cooiiiiiiiiii 117
pthread_attr_setguardsize ... 118
pthread_attr_setinheritsched.........cccociiiiiiii e 118
pthread_attr_setsChedParam .........c.ccciiiriiiiiicceee e 118
pthread_attr_setschedpoliCy ..o 119
pthread_attr_SetSCOPE.......ccooiiiiiiiiiiiiic s 119
pthread_attr_setstack.........cccocoiiiiiiiiiii s 120
pthread_attr_setsStackSiZe.........ccooiiiiiiiiiiiiiiii s 120
pthread_barrierattr TNt ..o 121
pthread_barrierattr_setpshared ... 121
pthread_barrier_Init..........oiiii s 120
pthread_cleanup_pushi.........ccooiiiiiiii s 122
pthread_condattr init.........ccccoiiiiiiiiii s 123
pthread_condattr_SetcloCK.........cccoiiiiiiiiiiiiiiiiiiiiii s 124
pthread_condattr_setpshared.............coceeiriiiiiirriiiere e 124
pthread_cOnd_INit.......cccoiiiiiiiiiii s 122
pthread_cond_signal ..o 122
pthread_cond_Wait ..o 123
pthread_mutexattr It ... 130
pthread_mutexattr_setprioceiling ...........cccovveiiiiiiiiiiiiiic s 131
pthread_mutexattr_setprotocol............cccceiiiiiiiiiiiiiiiii s 131
pthread_mutexattr_setpshared ..o 132
pthread_mutexattr_SetrobUSt ... 132
pthread_mutexattr_Settype ..o 133
pthread_mMuUteX_INit ... 128
PTHREAD_MUTEX _ROBUST ...ttt ettt ettt ve e teesveeve e sbeevaeseveesaesansensaennneenses 132
pthread_mutex_setprioCeiling ... 129
PTHREAD_MUTEX_STALLED ...ttt ettt et eeeeveeveeteesseeveeseesseessensesseesesssensesssensesseens 132
pthread_muteX_trylocK ... 129
pthread_mutex_UNIOCK ... 129
pthread_rwlockattr Init ... 136
pthread_rwlockattr_setpshared ... 136
pthread_rwlock NIt ..o 134
pthread_rwlock _tryrdlock ... 134
Pthread _rWIOCK_WILOCK ......c.oveiiiiiiiiiiicicicerceee e 135
pthread_setcanceltype ... 137
pthread_SetCONCUITENCY ......ccvviiiiiiiiiiiiiiic s 125
pthread_setschedparam ... 126

The Authorized Guide to the Single UNIX Specification, Version 4 305



Pthread_SetSPecifiC. ... s 126
pthread_SPIn_INit ... s 138
pthread_spin_tryloCK. ... 138
pthread_testCancel ... 137
PUEChAr_UNIOCKEM ... 55
PUEC_UNIOCKEM ...t 55
PULPINISG .ottt bbb bbbt 139
PUEUEXLNE .. 30
PWIIEC oottt 198
FATNMAOIMLe ..ttt ettt ettt ettt ettt et e ete e v e ete et e eaeeseeabeeseeaseeseenseessenseessenseessenseeasenseessenteensenseenseessensesrsenseeaeen 69
TATIA T veeeeeeeeeee et e e e et e e e et e eeeaaeesaaee e e aeeeasaaesanaeeeaaaeeeeaaseesanaeeeeateeeaaatesenatesaaateeeanaeesennaesaneeean 141
F L= 16 (o & ol SRS TSROSO 141
TEAALINKAL.....cveiviceeieiecec ettt ettt et e et eeae et e teetseeteeaseeteeaseeteenseeseenseeaseseensestsensentsenrenreens 142
TRALLOC vttt ettt e et e et e et e e ae e te e ebe e taeeabe e baeeaae e baeebe e beeebeebaesabeebaeeteeebaenareentes 293
REALTIME......coiitieteeteeceee ettt ettt ettt vt et enaeereeve e e eseensenas 34,93-97,147-149, 157, 249
REALTIME THREADS ......oootioteeeeeee ettt ettt eve v ene v e enaeeneen 118-119, 126, 129, 131, 137
<7 ) OO 144
7o (OO 144
TEGETOE oot e 144
TEMAINAET FUNCHON ...vviveevectieieceetece ettt et ettt et e et e et eete et e eteeseeteenseeseenseesseeseensesssensesseensenseens 287
TEIMAITIART S .....oovvieeeieeececcte ettt ettt ettt ettt e eteeteeeaeeaeeeteetseateeaseeteeaseeteenseeseenssesseseensestsensestsensenseens 144
TEIMAINIAETL ..ottt et e e et e e be e teeeabeeebaeeaae e baeesseeabeesaseeseeseseesaessssensaensseenses 144
FOITIQULE «.veuttiaietitete bttt ettt se ettt et et b et bbb et b e s b e ab b s e b e b e b et e b ek e b e b e b e se b e bbb e s s e b e s b e b e b e ks b e be b e be b e se b et es 69
TEIMIQUOL .ot 145
L3041 1 o) OO 145
<) A ¥ 10 0 <= | SO UUPURPPPRRRE 145
FITUEE ettt ettt ettt et ettt ettt et e ete e aeeae e b e eab e be et b eabeeabeete et e et e eteeateteeatereerbeeteenrenteenrenteen 146
FITUEL 1ottt ettt ettt ettt et ettt et e ete e ae et e be et b eabe et eeteebe et e et e eaeeteenteereerbeeteensenteenreereen 146
FOUIAS <ottt ettt et ettt et te et e eteeteeaeeseeasebeesseaseesseeseenseeteenseessenssensenseersestsensenssensenseens 147
FOUNINE .ottt sttt bbb bbb bbb 290
TOUNAL ottt ettt e et e e te e e be e tee et e e baeeabe e bseesss e baeeaseenseesaseenseesessenssessssensaensseenses 147
SCAIDINS ...ttt ettt ettt et e ettt eete e ae e b e teerb e beeab e te et e eteeteeaeeteeatereerbeeteereeteenrenreens 147
SCAIDINI ..ottt ettt b et e et e e ta e et e e baeebe e beeebeebaeeabeeraenareebaenareenres 147
SCAIDIN .t ettt et et e te e ebe e aa e et e e bae ettt e baeebe e baeebeebeeeabeereentseebaenrreenres 147
SCAIDIE ...ttt ettt et ettt et et ae et et e et e te e b e te et e bt eteeaeeteeateete et e bt ereeteenrenreens 147
SCAIDIL ...ttt ettt et ettt ettt ae ettt eetbeete et e te et e et e eteeateteenteteerbeeteereeteenreereens 147
SCANIAT .ttt etee ettt ettt ettt e bt e e te e bt e e ebe e beeease e baeease e baeeese e baesebeesaeeassebaeatbeenbeeeaseenbaesabeebaentreenbeeeareents 6
SCAIN vttt ettt ettt ettt ettt ettt ettt b et te et be et e ae et e eae et e bt et e ete e beett et e etbereetteeteerteereenrenais 48,293
sched_get_Priority_IMIN ... 147
SEEAAS.....eeceveeeeete ettt ettt ettt et ettt ettt et e bt e teeat e beete e be et e et e eateteeaeeteenbeeteenseereenbeeasereeaeen 26
SELECT .ttt ettt e e e beeeae e be e et e eaaeetae e baeataeebaeeabe e baeeabeebaeeabe e taeetteebaeenseentens 116
SEITL_ WAL ..uuriiiiiiiiiiieeeeieiiee e e e eeetre e e e eesareeeeeesestareeeeeessaaeeeeeesssssaeeeeansssaseeeeassaseeeesastasesessenssssseesensssreseeesnnres 151
SEEGTOIE vttt 28
SEENOSEEIE ..ttt ettt ettt e et e e be e e ta e e be e taeeba e tbe e baeeaaeebaeetaeeabeeerbeeabeetaeeraereean 28
SEEIEIITIET «...eeeiiieecieee et ee et e ettt e ettt e e tteeeetaeeebbeeeeaseeeasssaaassseaesesaeeasssesasssaeasssaeeassssesssssaansseeanssaeessssaaansseeannes 59
SELOZMASK ...t s 19
T8 U] 1<) 4 | SO PSSR PPPPRROt 28
SEEPTIOTIEY «evtiet s 61
SEEPIOTORIE ...ttt 29
SEEPWEINE Lottt 29
SEEIIIMUIL .. ettt et erte e et e ebe e te e e beeeta e e beeetae e ba e taeeba e teeebaeeaaeerteeeabeerbeetaeeraeaeean 62
LT3 =1 L U SPSURUPPPPRROt 29

306 A Source Book from The Open Group (2010)



Index

LT =] =X (OSSPSR PPPPRROE 69
L1140 U 0= 4 | PSSR PPPPRROE 30
SEEVDUL .ottt ettt ettt et e ettt e et e ettt e b e te et e bt beeaeeteeateete et eeteereeteenrenreens 294
o0 e 03 OO OO OO OO 160
SIZIIDIL «.eeeeeet ettt ettt 282
o0 T o (OO OO OO OO 82
SIZPAUSE ...evvvteeetetete ettt a bR b a e a e a et b et ans 160
SIZPTOCIINASK «..vvivietttt ittt ettt teae 137
SIZIOISE c..eveettt ettt ettt teae 160
SIESOE vttt bbbttt 160
SIGWAIHIIIO .. 163
SIIUE 1ttt ettt ettt ettt aeeatebe et eabe et b eate et et e et e et e eteeatereeateereerseeteenreeteenrenteens 163
SININE ottt ettt ettt ettt et e eae e ae et eabe b e bt eab e bt et eeteebeeaeeteeateereerbeeteereeteenrenreen 163
SININL .ottt ettt et ettt et e eae e te et e teerb e bt et e te et e eteebeeaeeteenteereerbeeteenrenteenrenteens 163
SINL ettt ettt e b e et e et e e tae e ae e teeebe e baeeabeebaeaaae e baeebeeteeebeebaeeebeetaenareeraenrreentes 163
SIZEOF .ottt ettt ettt ettt et e et et e et et e et e teeb et e et e eteebeeateteeatere et eeteenreateenrenteens 269
SIUPTANEL .o s 45,294
SOUTCE flE INCIUSION ...vovvievvitierecteeteceeete ettt ettt et ettt ettt e et e e te e s eteeveeteenseeseenseenseeseensesssensesssensesseens 272
specified-width INteZEr tYPe......ccoiiviiiiiiiiiiiii 277
SPIIINEE .t s 45,293
SALEE 1o 164
0 o OO 164
STANIA. c.veevieeteeeie et ettt e ettt eeteeette e beeetteebeeetaeebeestaeerbe e baeebaeaaeeabeebaeaabe e baeeabeentaeeabeetaeaabeebaentesebeenraeentes 141
STANIAAS. ...ttt ettt e et e et e st eeebeeetaeebe e tee e beeeabe e beeataeebaeatae e ba e teeebaeeaaeeabeeetbeerreetaeeraenreean 26
STATNIAOMN ... cutiitieeieecte et ettt et e et e eeteeeteeeteeetseebeessseebaeasseebeassseesseessaeessaeasseensaesseeesaesseesseessseesseesseensaeseean 69
SSCANNS ...vveeereeteere et eete et e te et e ete et e e bt et e e bt et e ete et e ett e teert e be e b e ate e beeae et e ete et e ete e beeteenbeetsereerteeteereeereenreeais 48, 293
] 7 1 AU USURUPPRPRROt 49
SEATVES ottt ettt ettt ettt et e bt et e at et e te et e ett et e eteeteeaeebeerbeeteenteereenbeereenreeaeen 50
S BT ettt ettt ettt e b e et e e be e tae e be e beeebeeetaeeabeebaeatbeebaeebe e beeerbeetaeeabeebaenareereenrreentes 165
SEAOUL ettt ettt et e et e e b e e ta e e ae e te e ebe e taeeabe e baeeaae e baeeabe e beeeabeebaeeebeebeenaeeeraenareentes 165
S D D ettt bbbttt aes 166
S D IO DY ettt as 170
SEICASECINP L. e 165
1515 vere) 1 0 ST T RSO OTRRT 166
STREAM ...ttt ettt ettt et et e ett et e eateeaeeasesbeesseateesseeteenseetsenseessenssenseseensestsensentsensenseens 139
STREAMS ...ttt ettt e ettt e et e et e e be e tbeebaessaeeabeessseeabaessseeseenssesbeenssesnns 35,59, 69, 256
10 (<) 4 o) (i RO 168
LS80S 0 S OO TP 168
1515 0 010} o NN AP TO TSROSO 168
SETTHIITIC vttt ettt ettt ettt ettt e ae b et e etb e be et e bt et e eteereeaeeteeatereerbeeteebeeteenreeteens 294
518 w451 0 (L= OO TT RSO TRRROTRRT 168
SHING LEETAL ...t s 269
SEINCASECITIP . ..ttt ettt bbbt b e b e ettt b et b as 165
SEINCASECINP L .. s 165
w3 4 Te LB o 2RO 167
SETEOM cateiiie ettt ettt e et e b e e tb e et e e ta e e be e tee e be e aaeeabe e baeeabe e baeebe e beeeabeetaeeabeebaeeareereenrreenres 294
SETEOL oottt ettt et et ettt et e et te et e beerb e be et e ebe e beereeteerteteeateteertenteenrenrean 171, 294
10 (o) S RO 172
SETEOLA ettt ettt ettt e ettt e ba e et e e be e e tb e e be e e be e baeetbe e baeeabe e baeeabeenreesabeeraenaras 171,294
SETEOLL oottt ettt e e e te et e e baeetae e be e e b e e beestbeebaeeabe e baeetbe e baeeabeenreesareesaenaras 172,294
SETEOULL. ettt et e e e be e et e e beeeebe e aeesabeensaesass e baeease e beeesseenseesareensaenaras 172,294
SETEOUITIAX .t teeieeeiitee e e ettt e ettt e e e e etee e e e estteeeee e staaeeessessssseeesesssssaeessassssaseessssssaseeessassssseessessssseeeesnsnses 172

The Authorized Guide to the Single UNIX Specification, Version 4 307



Index

structure member

INCOMPLELE ATTAY ....ocviviiiiiiiiic s 270
1515 e i o 0.4 ) ST T OSSOSO 173
SWPTIINEE .o 53
SWSCAN .ttt ettt ettt ettt ettt e st es b e st e s e st e b en b e s et e s e st es e b e st b e st b e st b e st e s et e se b e s et e st be st b e st beneesenene 54
SYIMUINKAL ..ottt 173
SYSLOG 1ttt bbb 19
SYSEEIMN INEETTACES ... 1
1221 0¥ SO OO SE O U OO 175
BATINE L.ttt ettt ettt s et b st b e st b et et et et e s te s ene s ene s enen 175
BATINL <.ttt ettt b e bt bbbt b bbbt e a e a e st e be bbb sbeben 175
BATIL .ttt et h b bbb b bbbt et ea b et e a e a e e bt e beeb e b e besbeben 175
BEITUA -ttt ettt ettt ettt ettt bRt bRt b e st be st b et e b e st et et tenteneasenesenen 177
EGAMIMAL ..o e 178
EGAMIMAL....ooee s 178
HMET_GEHINE .c.cviviiiiiii s 179
BIIMNIOT_SEEEIIIIE .ttt ettt eee e e e eeebaa e e e e e e aabaeeeeeestaseeeeeestasesessenasaseeeeeenssreseeeennres 179
EINPINAIMN ottt 295
TIMP_IMAX ettt ettt ettt ettt ettt e et et e st e st e st e st b e st b e st e b et et e s e se s es et eneasenen 295
EOKEN PASHINEG . ....ocvviiiicet e 273
£00) [0 ) 7r4<) ol F TSROSO 180
EOUPPET_L .ottt 181
LAY et 5 = 1 L= RO 181
LAY (o A v <) ol TR 181
EOWUPPOI_ Lottt ae 182
TRACING . ...ttt sttt sttt ettt st ettt e b et e b e st e b e st ese st e st s te st sbenesseneebentebeneesenseseneene 109-115
ErANSIATION TIMIE ..ottt ettt ettt s b b se s 273
translation-time arithmEtic ........coeoiririiii ettt 272
trigonometric fUNCHON.........cooviiii 279, 283
BIUTICE ottt ettt ettt a et et et et et ea s et et e st e st e st b e st be st b e st e b en e e s et e senteseasenesenen 182
EIUIICL -ttt ettt et e b e b bt e bbb st b e b et et et et eatea e st e bt eb e e b besbeben 182
ESEATCI ..ttt ettt et b bt bbb bt b bbbt e a e a e bbbt bt b sbeben 177
L% 4 =0 o < OO 183
EIW ALK ettt ettt h b bbb bbb bt et a b et ea e e a e bt e bt eb b b sbeben 177
1572 <L OO OO OO OO OO OO OO OO OO OO OO OO U RO ERUOT IO ORI 266
tYPE QUALEIET ..o 266
type-generic Math ... 291
1972 0 F- 10 (LSOO PO P OO PO P RSP PRTPRRRPR 183
BZSOE e ettt ettt e b e s aa e r e ae e sre e aae s 183
TUCN ettt ettt ettt et b et e s et e s et e se b e st b e st b e st b e st b en b e s entese st e st s en e b e st bentebeneebeneeseneene 267
UINTI_IMAX ettt ettt ettt ettt et ettt et b e st b e s e e b ent e s e st ese st e st s e s ebe st beneeseneeseneesensens 277
L =t oSO 295
UNIVETSal CHATACTET TAINE ......euiiieietiieiiiete ettt ettt ettt bttt b et b et b et e s et ese s eseaseseasenn 267
UKL 1ttt ettt ettt et et et e e b et e s et e st b e st b e st b e st e s entesentesentesenseseaseneasenen 184
unsuffixed function

with C-prefixed COUNTEIPATt ..o s 291

without C-prefixed cOUNtErPart.........cccocoiiiiiiiiiiii s 291
user ID

T€AL ANA EffECHIVE c.vinieiiieiieie ettt sttt ettt ettt b bbb e st et eneetenea 156

setting real and effectiVe ... 156
UEIEIES ettt ettt et b bbbt b b st e b et et et e st et eatea e bt e bt ebeebesbesbenben 201
UEIINEIISAL ...ttt ettt e bt e b st et e e st e s bt ea e be et e b e et e s bt et e ebe et e ebe e bt ent e bt enaesbeennenueen 52

308 A Source Book from The Open Group (2010)



Index

L8 L s (=TT OSSR USSURUUPRROt 52
variable length array ... 270
VATTAAIC INACTO «veivvvieeieeiie et eeiee ettt e ettt ee bt e eae e teesbe e teestbeeesseeaseeseesassenteesaseesaessseensseasssensaessseensesssseeseenns 273
VA_COPY terrevtitertitentetestetistet ettt et b et bt b bbb a e b e e b st e b e e ke b e b e b e R bR bR bbb bbb et bbb bbbt 274
VAPTINEE 1o 186
VES ettt et ettt ettt ettt et et t et e et e et e ettt e ettt e erteateeat e bt eateeteenteereenbeettereeteenreereens 258
VESCANS ...ttt ettt ettt et e vt et e et e et e e bt et e e bt et e ete et e etteebeerteeteeateete et e ereebe bt ereeteenreereens 295
VEWSCANT ..ottt ettt ettt ettt et e et et e ete et e ete et e ete et e ereeeseeateeteeaeeeteenteeteenbe bt eseeteenreereens 295
VPTIIEE oo 186
VSCANE .ottt ettt et ettt et et e eaeeete et e eteeseete e seets e s eess e b eete e b e ete et e eateabeeabeteeabeeaeenbeeteense bt ereeteenrenreens 187
VSIIPTINEL oo 186
VSPIINEL oo 186
VSSCAINS vttt ettt ettt et e et e te et e ete et e eteeteete e seessenseessenseetsenseetsenseerseaseeaseteereeeteenteereenseetsereeteenreereens 187
VSWPTIINEE 1. s 187
VSWSCANS «.vviteeetecteetecte ettt ettt et e ete et e ete et e ete e seesseseessenseeseenseeseenseesseaseeasesseasenseenseessensestsensenteenrenseens 187
VWPTINEE s 187
VIWSCAI ...t evveteeteete ettt et ete et et e te et eete et eeteerseesseseessenseessenseessenseessenseesseseeasenssessessensesssensestsensentsensenseens 187
WATEPIA v s 188
WEPCPY ctenveresteneitestetest ettt ettt et b et bt bt b s s b s e b st e b e b e ke b e b e b e bbb e R e bR b e R bbb bbbt bbbt et 190
WEPIICPY -vevetereitentetestetistetit ettt ettt et b et bt b s b e s s b e s b e b s b e ke b e b e b e bbb e s e b e s e b e s b e b e b e bs b e bbbt bbb s bbb 192
WESCASECINP L.t 189
AT el Yoo ) | N SRR 190
WESTICASECITIP «.ovvrtesretiatetistetet ettt ettt et b ettt e s et e s s et s s b ek e b et e b e b e b e bbb e s b e s s b e ab b e b e b e b et e b e b e b e b e b e se b e ss et e ba e 189
WESNICASECINP L ..ot 189
TWESTUEIN ..ttt ettt ettt et e et e e e teeetae e beeeabeebeeeebe e saesaseenbeesaseenseesaseensaessseenssensssenseeesseenreesnseenseenn 191
WESTITEOIMIDIS ..ottt et et e et e st e e teeetbe e beeease e beesabeenbeessseenssensseensaessseensesssseenseenns 193
TWESEOS ettt ettt ettt ettt ettt et ete et e e bt et e ete et e ete et e ete et e ete et e ereeateeat e beeateeteenbeereente bt ereeteenrenreens 194
TWESTOLA ettt et e e e bt e et e e beestbe e baeeabe e beeease e beesabeebeesebeesaeetsseseeeaseereeeabeenreenns 194
TWESEOLL ottt ettt ettt et ete et e e bt et e e te et e e te et e ete et e ete et e eaeeeteeabeteenbeeteenbeeteenbe bt ereeteenrenreens 194
TWESEOULL. .ttt ettt et et et e ettt eete et e eteebeeteenseeteenseeseeseeasessessessensesssenseetsensentsensenseens 195
7] 016 a4 - D QU PPPPRRN 194
RO Leic> 4 5w ¢ « NN TR PRRR SRR 195
AT e =1 V- T SR 196
WCEYPE_L oo 196
wide-string numeric conversion function ...........ccoceieiiecic 295
WOTAITOE .ottt ettt ettt et ete et e e bt et e ete et eeteebeeteenseeteenseeseeeseeasessensesssensesssensesssenseetsensenseons 198
WPTIIIEE ¢ s 53
TWSCANE .ttt eet ettt et e eteeteete e teeaeebeeas e beeaseebeeaseeseerseebeerteeat e aeerb e aeenbeeteenseteenbeeteenreeteenreeneereeaes 54
F L e eees 199
2 LSOO OO OO OO OO OO OO OO OO OO OO OSSO R RO OO OO OO RO 199

The Authorized Guide to the Single UNIX Specification, Version 4 309



Index

310 A Source Book from The Open Group (2010)



	MIG_Guide
	11 System Interfaces Migration
	11.1 Introduction
	11.2 System Interfaces

	12 Utilities Migration
	12.1 Introduction
	12.2 Utilities

	13 Headers Migration
	13.1 Introduction
	13.2 Headers

	14 ISO C Migration
	14.1 Introduction
	14.2 Language Changes
	14.2.1 New Keywords
	14.2.2 New Types
	14.2.3 Type Qualifiers
	14.2.4 Boolean
	14.2.5 Universal Character Names
	14.2.6 inline
	14.2.7 Predefined Identifiers
	14.2.8 Compound Literals
	14.2.9 Designated Initializers

	14.3 Decimal Integer Constants
	14.3.1 String Literals

	14.4 Implicit Declarations
	14.4.1 sizeof
	14.4.2 Multiplicative Operators
	14.4.3 Enumeration Specifiers

	14.5 Variable Length Array
	14.5.1 Array Declarations
	14.5.2 Array Type Compatibility
	14.5.3 Incomplete Array Structure Members
	14.5.4 Blocks
	14.5.5 The for Statement
	14.5.6 errno

	14.6 Comments
	14.6.1 Hexadecimal Floating-Point Constants
	14.6.2 Predefined Macros
	14.6.3 Source File Inclusion
	14.6.4 Translation-Time Arithmetic
	14.6.5 Minimum Maximum Line Length
	14.6.6 Case-Sensitive Identifiers
	14.6.7 #line Directive
	14.6.8 Empty Argument Macros
	14.6.9 Pragmas
	14.6.10 Translation Limits
	14.6.11 Token Pasting
	14.6.12 Variadic Macros
	14.6.13 va_copy()

	14.7 Headers
	14.8 Integer Types
	14.8.1 Exact-Width Integer Types
	14.8.2 Minimum-Width Integer Types
	14.8.3 Fastest Minimum-Width Integer Types
	14.8.4 Integer Types Capable of Holding Object Pointers
	14.8.5 Greatest-Width Integer Types
	14.8.6 Limits of Specified-Width Integer Types
	14.8.7 Macros

	14.9 Complex Numbers
	14.9.1 Trigonometric Functions
	14.9.2 Hyperbolic Functions
	14.9.3 Exponential and Logarithmic Functions
	14.9.4 Power and Absolute-Value Functions
	14.9.5 Manipulation Functions

	14.10 Other Mathematical Changes
	14.10.1 Classification Macros
	14.10.2 Trigonometric Functions
	14.10.3 Hyperbolic Functions
	14.10.4 Exponential and Logarithmic Functions
	14.10.5 Nearest Integer Functions
	14.10.6 Remainder Functions
	14.10.7 Manipulation Functions
	14.10.8 Comparison Macros

	14.11 Floating-Point Environment Support
	14.11.1 Exceptions
	14.11.2 Rounding
	14.11.3 Environment

	14.12 Type-Generic Math
	14.12.1 Unsuffixed Functions With a C-Prefixed Counterpart
	14.12.2 Unsuffixed Functions Without a C-Prefixed Counterpart

	14.13 Other Library Changes
	14.13.1 Wide-String Numeric Conversion Functions

	14.14 Annexes



